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CERGE-EI† & IAE-CSIC and Barcelona GSE‡

j.zapal@cerge-ei.cz

Abstract

The paper proves, by construction, the existence of Markovian equilibria in a model of
dynamic spatial legislative bargaining. Players bargain over policies in an infinite horizon.
In each period, a majority vote takes place between the proposal of a randomly selected
player and the status-quo, the policy last enacted. This determines the policy outcome
that carries over as the status-quo in the following period; the status-quo is endogenous.
Proposer recognition probabilities are constant and discount factors are homogeneous. The
construction relies on simple strategies determined by strategic bliss points computed by
the algorithm we provide. A strategic bliss point is the policy maximizing the dynamic
utility of a player with ample bargaining power. Relative to a bliss point, the static
utility ideal, a strategic bliss point is a moderate policy. Moderation is strategic and
germane to the dynamic environment; players moderate in order to constrain the future
proposals of opponents. Moderation is a strategic substitute; when a player’s opponents
do moderate, she does not, and when they do not moderate, she does. We prove that the
simple strategies induced by the strategic bliss points computed by the algorithm deliver
a Stationary Markov Perfect equilibrium. Thus we prove its existence in a large class of
symmetric games with more than three players and (possibly with slight adjustment) in
any three-player game. Because the algorithm constructs all equilibria in simple strategies,
we provide their general characterization, and we show their generic uniqueness. Finally,
we analyse how the degree of moderation changes with changes in the model parameters,
and we discuss the dynamics of the equilibrium policies.
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bargaining games over policies’. I owe special thanks to my advisors Ronny Razin and Gilat Levy. Further,
I would like to thank Avidit Acharya, Vincent Anesi, Enriqueta Aragones, David Baron, Daniel Cardona,
John Duggan, Jean Guillaume Forand, Tasos Kalandrakis, Antoine Loeper, Fabio Michelucci, Francesco
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of Rochester and their hospitality is appreciated. Financial support from the Post-Doc Research Fund of
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Abstrakt

Tento text dokazuje, konstrukćı, existenci Markov rovnováhy v dynamickém prostorovém
modelu legislativńıho vyjednáváńı. Hráči v modelu vyjednávaj́ı o politikách v nekonečném
horizontu. Finálńı rozhodnut́ı v každé periodě je výsledkem většinového hlasováńı mezi
návrhem náhodně vybraného hráče a status-quo. Finálńı rozhodnut́ı se stává status-quo
pro následuj́ıćı kolo vyjednáváńı, status-quo je tedy endogenńı. Konstrukce rovnováhy
se oṕırá o jednoduché strategie. Jediný parametr, strategic bliss point, plně determin-
uje každou jednoduchou strategii a nezbytným elementem konstrukce rovnováhy je algo-
ritmus, který produkuje profil těchto parametr̊u. Na rozd́ıl od politiky maximalizuj́ıćı
statický užitek hráč̊u, strategic bliss point je umı́rněná politika. Umı́rněnost hráč̊u je
výsledkem jejich strategické interakce v dynamickém prostřed́ı. Hráči navrhuj́ı umı́rněné
politiky, aby omezili své protihráče. Umı́rněnost je strategickým substitutem, pakliže pro-
tihráči daného hráče jsou umı́rněńı, on sám neńı, a pakliže protihráči daného hráče nejsou
umı́rněńı, on sám je. Ukazujeme, že jednoduché strategie a strategic bliss points spolu s al-
goritmem vedou ke konstrukci, která představuje Stationárńı Markov Perfect rovnováhu.
Jako d̊usledek, ukazujeme, že tato rovnováha existuje ve velké skupině model̊u dynam-
ického prostorového legislativńıho vyjednáváńı s v́ıce jak třemi hráči a v jakémkoliv mod-
elu s právě třemi hráči. Protože prezentovaný algoritmus je schopen zkonstruovat všechny
profily strategic bliss points které podporuj́ı rovnováhu v jednoduchých strategíıch, posky-
tujeme jej́ı obecnou charakterizaci a ukazujeme, že je obecně unikátńı. Dále analyzujeme
jak se mı́ra rovnovážné umı́rněnosti měńı s parametry modelu a popisujeme dynamiku
rovnovážných politik.

JEL Classification: C73, C78, D74, D78
Keywords: dynamic decision-making; endogenous status-quo; spatial bargaining; leg-

islative bargaining
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1 Introduction

Many real world policies and spending programs persist and evolve in time, are determined

repeatedly, and their changes are enacted under the shadow of the extant legislation that

is revised and becomes the new status-quo. Dynamic legislative bargaining models reflect

these features. The models build on static non-cooperative models of legislative bargaining

in the spirit of Baron and Ferejohn (1989). In these models negotiations follow a sequential

protocol of proposal-making and voting, either in distributive bargaining over the allocation

of benefits, or in spatial bargaining over choices of policies. The static models assume

bargaining terminates upon an agreement being reached. The dynamic models instead

embed the static decision-making protocol as a stage game in an infinite horizon repeated

interaction. In each stage game the status-quo is the policy last enacted, making the

current decision future status-quo and inducing a dynamic, not just repeated, strategic

situation.

Starting with Baron (1996), the dynamic legislative bargaining literature has been

steadily growing (see next section for an overview). Kalandrakis (2004b) was the first to

characterize the Markov equilibrium for the dynamic version of the distributive model. In

the absence of applicable existence theorems for Markovian equilibria, his characterization

constitutes an existence proof as well. In the continuing absence of the existence theorems,

and due to the lack of similar characterization for the spatial model, the existence and

properties of Markov equilibria in the dynamic spatial model remain unknown.1

In this paper we prove, using constructive arguments, the existence of Markov equilib-

ria in a dynamic spatial legislative bargaining model. A group of legislators repeatedly sets

policy in a one- or multi-dimensional policy space. The preferences of the legislators are

quadratic or Euclidean, characterized by bliss points, the most preferred policies. In each

period of infinite horizon a randomly selected legislator puts forward a proposal. Majori-

tarian voting between the proposal and the status-quo determines the winning alternative

that yields utility to the legislators and becomes the status-quo for the subsequent period.

The status-quo evolves endogenously and depends on the identity of the proposer and the

votes of the entire legislature in every period.

We start the equilibrium construction by defining simple stationary Markovian pro-

posal strategies. A Markovian proposal strategy maps the state, the status-quo, into a

policy proposal. A simple stationary Markovian proposal strategy depends on a single

parameter, the policy a player proposes when the status-quo gives her ample bargaining

1 Baron (1996) and Duggan and Kalandrakis (2012), the two papers closest to providing existence and
characterization in the spatial model, are discussed in the next section.
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power. In the static setting this parameter would be the player’s bliss point, the policy

maximizing the static utility of a player. In the dynamic setting this parameter is the

strategic bliss point, the policy maximizing the dynamic utility of a player. The crux of

the construction is an algorithm generating the strategic bliss points.

Two conditions guarantee that the construction, the simple proposal strategies in com-

bination with the algorithm, delivers Markov equilibrium. The first one, sufficient, is

stronger than necessary but easy to check. The second, necessary and sufficient, is more

involved to verify, but still focuses only on a finite set of points in an otherwise infinite

policy space.

Using these tools, we prove, by construction, the existence of Stationary Markov Perfect

equilibrium (SMPE) for any strongly symmetric dynamic spatial legislative bargaining

game with one-dimensional policy space. Existence is assured under a mild condition on

the degree of patience of the players, a condition which ceases to bind as the number of

the players increases. For games that are symmetric, a weaker notion, we prove the same

result under a stronger condition on the parameters of the game.2 Although not generally,

the construction can also work for games that are not symmetric. One must, however,

specify a meaningful class of asymmetric games for which it does.

One such class are three-player games with one-dimensional policy space. For these,

we show that the construction either delivers an SMPE or we can construct it via an

easy adjustment to the simple strategies. Therefore, we prove the existence of SMPE for

any three-player dynamic spatial legislative bargaining game with one-dimensional policy

space. Because the (adjusted) simple strategies are pure, the SMPE is in pure strategies.

For one-dimensional bargaining games with a general number of players, we further

demonstrate the multiplicity of SMPE in the simple strategies. This multiplicity is espe-

cially severe in symmetric games with many players; adding two players to a symmetric

game increases the number of equilibria twofold. With three players, the multiplicity is at

its minimum. We prove that for any three-player one-dimensional game, if an SMPE in

simple strategies exists, and we provide conditions when it does, it is essentially unique;

at most two SMPE in simple strategies exist and if so, they exists under non-generic

conditions.3

2 A game is strongly symmetric if the players’ bliss points are equidistant from each other and the
players have equal recognition probabilities. It is symmetric if pairs of players around the median have
bliss points equidistant from the median’s bliss point and have equal recognition probabilities. ‘Any’ game
discussed below means for any bliss points, recognition probabilities and discounting. See section 3 for
formal definitions.

3 We stress that any uniqueness statement refers to SMPE in simple strategies and does not imply the
uniqueness of an SMPE in general.
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In fact, any multiplicity of SMPE in simple strategies is non-generic. We show that all

profiles of strategic bliss points that support an SMPE in simple strategies are constructed

by our algorithm. By analysing the profiles of strategic bliss points produced by the

algorithm, we provide general characterization of all SMPE in simple strategies for any

one-dimensional dynamic spatial legislative bargaining game. And the analysis shows

that the algorithm produces multiple profiles of strategic bliss points under non-generic

conditions.

For games with multi-dimensional policy spaces we proceed in a similar manner. We

define simple strategies characterized by strategic bliss points, we specify the algorithm

producing these strategic bliss points, and we derive conditions guaranteeing that the

construction constitutes an SMPE. And we present two classes of games, one in R2 and

one in Rn, that satisfy the conditions.

Moderation and its strategic substitute nature are at the core of our equilibrium con-

struction. This is the main insight of the paper. A player moderates when she proposes

her strategic bliss point, which is a more moderate policy - closer to the median - than her

(static) bliss point. A player moderates in order to constrain opponents; by moving the

status-quo closer to median’s bliss point, future proposals are constrained to be moderate

as well.4 When the opponents do moderate, they are effectively constraining themselves,

so that the player has no incentive to moderate. If the opponents do not moderate, the

player herself has an incentive to do so; that is, moderation is strategic substitute. As a

result, all the equilibria that we construct induce asymmetric moderation (in terms of who

moderates and to what extent), even if the underlying game is strongly symmetric.

Moderation and its intensity are the result of two opposing forces. The first force is

standard; proposals are pushed towards the proposers’ stage utility optimum, their bliss

points. The second force is strategic; proposals are pushed towards the bliss point of

the median player, with proposers aiming to constrain the future policies of all other

players. These two forces cancel out at the strategic bliss point. The strategic force gains

prominence and the extent of moderation increases with the patience of the players and

with the higher probability of recognition of direct opponents - those with bliss points on

the other side of the median.

We proceed as follows. The next section surveys the literature on dynamic legislative

bargaining. Section 3 introduces our model, notation and solution concept. Sections 4,

5 and 6 are devoted to the analysis of a model with one-dimensional policies. Section 4

describes the simple strategy construction and establishes the conditions which guarantee

4 The identity of the median and the fact that she is decisive under majority voting rule are results
that do not follow immediately.
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that it delivers equilibrium. Section 5 examines these conditions for symmetric games.

Section 6 investigates three-player games. Section 7 is devoted to the multi-dimensional

model. Section 8 concludes. Most of the proofs are in appendix A1. A series of exam-

ples introduced throughout the paper are designed to illustrate prominent features of our

analysis and of the equilibria we construct.

2 Review of the Literature

The typical dynamic legislative bargaining model with endogenous status-quo posits a

group of players bargaining in an infinite discrete time horizon with discounting. Each

period starts with a status-quo, the policy last enacted. A randomly chosen player makes

a proposal after which a vote over a binary agenda, consisting of the status-quo and the

proposal, follows. The winning alternative determines players’ utility for the period and

becomes the status-quo for the next one.5

The original formulation of legislative bargaining as a model with endogenous status-

quo are Baron (1996) and Epple and Riordan (1987). Baron (1996) analyses a spatial

bargaining model in which the players bargain over a one-dimensional policy space. Epple

and Riordan (1987) analyse a distributive bargaining model in which the players bargain

to distribute a fixed-sized budget among themselves. In the spatial formulation the utility

of players varies in all the dimensions of the policy space. In the distributive setting the

players only care about their share of the budget.

The model of Baron (1996) is the most closely related to ours. His model is almost

identical to our one-dimensional model; he restricts policies to R+, which we allow for

but do not require, and his stage utilities are general, not quadratic. He develops partial

equilibrium characterization and provides intuition for the strategic forces at play.6

In addition to Baron (1996), several other papers analyse spatial models under special

constraints. These include restrictions on the policy space (Dziuda and Loeper, 2012;

Fong, 2005), restrictions on number of players (Forand, 2014; Nunnari and Zapal, 2013)

or use of numerical computations (Baron and Herron, 2003; Duggan, Kalandrakis, and

5 The dynamic legislative bargaining models share many features with the static legislative bargaining
models we do not survey here. See, for example, Banks and Duggan (2000, 2006a); Cardona and Ponsati
(2007, 2011); Cho and Duggan (2003, 2009); Eraslan (2002); Eraslan and McLennan (2013); Eraslan and
Merlo (2002); Herings and Predtetchinski (2010); Kalandrakis (2004a, 2006a,b) for theoretical treatment
of the static models.

6 See discussion following Proposition 1 for why the quadratic utilities cannot be dispensed with.
Baron (1996) also includes informal discussion of an example of full equilibrium characterization (his
Table 1). The discussion following Proposition 2 explains why the profile of strategies in the example
cannot constitute an equilibrium.

6



Manjunath, 2008).7

Following Epple and Riordan (1987), the analysis of distributive models has focused

on equilibrium characterization and properties (Kalandrakis, 2004b, 2010; Anesi and Sei-

dmann, 2012; Baron and Bowen, 2013) including investigation of models with risk aver-

sion or alternative decision making protocols (Battaglini and Palfrey, 2012; Baron and

Bowen, 2013; Bowen and Zahran, 2012; Diermeier, Egorov, and Sonin, 2013; Nunnari,

2012; Richter, 2014). Models combining distributive and spatial aspects with (Baron,

Diermeier, and Fong, 2012; Cho, 2004) or without (Bowen, Chen, and Eraslan, 2014) elec-

toral competition usually investigate joint public (spatial) and private (distributive) good

determination.8,9

General characterization and existence results for Stationary Markov Perfect equilibria,

the standard solution concept in the papers surveyed, are scarce. Kalandrakis was the first

to provide a characterization of SMPE for the distributive model with three (Kalandrakis,

2004b) or more than five (Kalandrakis, 2010) players. Diermeier and Fong (2011) provide

an algorithm leading to SMPE in a model with a persistent agenda setter and a discrete

policy space. Duggan and Kalandrakis (2012) provide a very general SMPE existence

result assuming noise in the preferences and the status-quo between-period transitions.

The noise complicates the equilibrium characterization and is absent in our model.10,11

We want to highlight the fact that the endogenous status-quo literature just discussed

is related to but distinct from the models with a single decision to be taken and bargaining

proceeding through a series of rounds with evolving default (Anesi and Seidmann, 2014;

Bernheim, Rangel, and Rayo, 2006; Diermeier and Fong, 2009; Vartiainen, 2014). Also

related but distinct is the literature with dynamic political economy models (for example

7 Papers that embed dynamic spatial models in richer economic or political settings include Chen
and Eraslan (2013) (agenda formation), Diermeier, Prato, and Vlaicu (2013) (choice of decision-making
rules), Levy and Razin (2013) (interest group influence), Piguillem and Riboni (2013a) (capital taxation),
Piguillem and Riboni (2013b) (present-biased legislators) or Riboni (2010); Riboni and Ruge-Murcia
(2008) (monetary policy).

8 Electoral competition in combination with legislative bargaining. However, as Forand (2014) and
Nunnari and Zapal (2013) illustrate, the difference between electoral competition and legislative bargaining
can be merely a difference in labelling.

9 Two papers, analysing judicial precedents (Anderlini, Felli, and Riboni, 2014) and legislative sunset
provisions (Zapal, 2012, chapter 1), are models with endogenous status-quo, where in every period players
bargain jointly over policy and, not necessarily equal, status-quo for the next period.

10 Hortala-Vallve (2011), Penn (2009) and Roberts (2007) characterize equilibria in models with random,
not endogenous and strategically chosen, proposals.

11 Faced with the complex equilibria of the dynamic legislative bargaining models, many authors use,
at least partially, numerical computations (Baron and Herron, 2003; Battaglini and Palfrey, 2012; Bowen
et al., 2014; Duggan et al., 2008; Piguillem and Riboni, 2013a; Riboni and Ruge-Murcia, 2008, among
others) or provide numerical computation techniques tailored to these models (Duggan and Kalandrakis,
2011).
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Azzimonti, 2011; Bai and Lagunoff, 2011; Battaglini and Coate, 2007, 2008; Battaglini,

Nunnari, and Palfrey, 2012) where the dynamic link stems not from persistent policies but

from the accumulation of a durable public good, (public) debt or capital.

3 Model, Notation, Solution Concept

A game G = 〈n,x, r, δ,X〉 is fully specified by n, x, r, δ, and X all satisfying the assump-

tions we introduce next, and which are maintained throughout. N = {1, . . . , n} is the set

of players with odd n ≥ 3. The stage utility of i ∈ N from policy p is ui(p) = −(p− xi)2

where xi is the bliss point of i. x = {x1, . . . , xn} denotes the profile of bliss points of all

the players and we assume all the bliss points are distinct and ordered such that xi < xi+1

for ∀i ∈ N \ {n}. The median player is denoted by m = dn/2e. The median bliss point is

denoted by xm = xdn/2e.

In each discrete period of infinite horizon, i ∈ N is recognized to propose policy p ∈ X
where X ⊆ R is a closed convex interval. If X ( R then we require X to be symmetric

around xm and include both min {x} and max {x}. r = {r1, . . . , rn} with ri > 0 for

∀i ∈ N is the profile of probabilities of recognition and naturally
∑n

i=1 ri = 1. Given the

status-quo x ∈ X and policy proposal p ∈ X by recognized i ∈ N , a majoritarian vote

between x and p follows. The winning alternative determines the utility of the players and

becomes the new status-quo. The utility of player i ∈ N from an infinite path of policies

p = {p0, p1, . . .} is

Ui(p) =
∞∑
t=0

δtui(pt) (1)

where δ ∈ [0, 1) is the common discount factor.

Define d(x) = |x−xm| to be the distance of x ∈ R from median xm. da(x) = xm+d(x)

is x mapped into the point above the median’s bliss point and db(x) = xm − d(x) is x

mapped into the point below the median’s bliss point. Note that x ∈ {db(x), da(x)}. A

similar operation is defined on the space of players’ indexes. dI(i) = |i−m| denotes index

‘distance’ of i ∈ N from m. dIa(i) = m+ dI(i) and dIb(i) = m− dI(i) is the pair of players

index distance dI(i) from median.

Na = {i ∈ N |xi > xm} is the set of players with bliss points above the median and

Nb = {i ∈ N |xi < xm} is the set of players with bliss points below the median. Sums

of recognition probabilities for the two groups of players are denoted by ra =
∑

i∈Na ri

and rb =
∑

i∈Nb ri. For j ∈ {1, . . . , n−1
2
}, rej =

∑j
i=1 ri will denote the sum of recognition

probabilities of j most extreme players in Nb. By convention rej = 0 when j = 0. We will
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be using this notation in the context of symmetric games and do not need to establish a

similar notation for players in Na. Finally, f(a−) = limx→a− f(x) denotes the one-sided

limit of a real-valued function from below and f(a+) = limx→a+ f(x) denotes the one-sided

limit of a real-valued function from above.12

Definition 1 (Symmetric G). G is symmetric if and only if for ∀i ∈ N , d(xdIb(i)) = d(xdIa(i))

and rdIb(i) = rdIa(i).

Definition 2 (Strongly symmetric G). G is strongly symmetric if and only if ri = rj for

∀i ∈ N and ∀j ∈ N and xi − xi−1 = xi+1 − xi for ∀i ∈ {2, . . . , n− 1}.

A pure stationary Markov strategy of each i ∈ N specifying a policy proposal given

status-quo x is p̂i : X → X. We denote by σ̂ = (p̂1, . . . , p̂n) a profile of pure strategies,

reserving notation pi and σ = (p1, . . . , pn) exclusively for the simple strategies defined

below (Definition 4).

Any profile of pure stationary Markov strategies σ̂ = (p̂1, . . . , p̂n) induces a continuation

value function of player i ∈ N , Vi : X → R. Vi(x|σ̂) denotes the expected utility of i from

an infinite future of play according to σ̂, starting with status-quo x, before the identity of

the proposer in the next period has been determined. It can be computed as

Vi(x|σ̂) =
n∑
j=1

rj [ui(p̂j(x)) + δVi(p̂j(x)|σ̂)] (2)

and dynamic (expected) utility of i from accepted x, Ui : X → R, is

Ui(x|σ̂) = ui(x) + δVi(x|σ̂). (3)

We need several assumptions to calculate Vi as in (2). The first one concerns the pro-

posal strategies. We assume that proposals with zero probability of acceptance are never

made.13 The second one concerns the voting strategies. We assume that all players use the

stage undominated voting strategies of Baron and Kalai (1993) when voting between the

proposed policy p ∈ X and the status-quo x ∈ X and vote for p when indifferent between

12 To avoid any misunderstanding, function f is called increasing (at x) if f ′(x) > 0 and non-decreasing
if f ′(x) ≥ 0. Similarly, x ∈ R is positive if x > 0 and non-negative if x ≥ 0.

13 Given status-quo x, the proposing player whose utility maximizing proposal is x can obtain this
utility either by proposing x or by making a proposal she knows would be rejected. We assume she does
the former. This assumption does not change the set of equilibria that are observationally (outcome)
equivalent and is standard in the dynamic bargaining literature.
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p and x.14 This implies i votes for p rather than x if and only if

Ui(p|σ̂) ≥ Ui(x|σ̂). (4)

These assumptions imply that any proposed policy is also accepted, making the distinction

between proposed and accepted policies superfluous and (2) the valid expression for Vi.

Note also that the voting strategies are fully determined by the proposal strategies (along

with the assumptions we have made). We abuse notation and terminology somewhat by

subsuming the voting strategies into the proposal strategies σ̂ or σ without changing their

notation or name.

The social acceptance set for a given x ∈ X, A(x|σ̂), is the set of policies such that

A(x|σ̂) =
{
p ∈ X|n+1

2
≤ |{i ∈ N |Ui(p|σ̂) ≥ Ui(x|σ̂)}|

}
(5)

and recognized i ∈ N proposes a policy from arg maxp∈A(x|σ̂) ui(p) + δVi(p|σ̂).

Definition 3 (Stationary Markov Perfect Equilibrium). A stationary Markov perfect equi-

librium (SMPE) is a profile of stationary Markov strategies σ̂∗ = (p̂∗1, . . . , p̂
∗
n) such that,

for ∀x ∈ X and ∀i ∈ N ,

p̂∗i (x) ∈ arg max
p∈A(x|σ̂∗)

ui(p) + δVi (p|σ̂∗)

and i ∈ N votes for proposed p ∈ X against x ∈ X if and only if

Ui(p|σ̂∗) ≥ Ui(x|σ̂∗).

4 Equilibrium Construction with X ⊆ R

The first result we prove greatly simplifies the derivation of decisive coalitions needed to

approve any given proposal p. It implies that the acceptance sets A are determined solely

by the shape of the expected utility of the median.

Proposition 1 (Dynamic median voter theorem for X ⊆ R).

For any profile of pure stationary Markov strategies σ̂, with implied voting such that, for

14 Stage undominated voting is a standard assumption in voting literature and rules out implausible
equilibria that can support arbitrary outcomes that are accepted because no voter is pivotal. Assuming
that an indifferent voter casts her vote for the proposed policy avoids any open set complications.
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∀i ∈ N , i ∈ N votes for proposed p ∈ X against the status-quo x ∈ X if and only if

Ui(p|σ̂) ≥ Ui(x|σ̂), p is accepted if and only if Um(p|σ̂) ≥ Um(x|σ̂).

Proof. See appendix A1

We stress that Proposition 1, which does not require SMPE, crucially depends on the

utility functions being quadratic. The definition of median as the player with xm comes

from the fact that m is decisive in the vote between two deterministic alternatives x ∈ X
and p ∈ X. However, voting between status-quo x and proposed p means voting between

two lotteries, as each of the alternatives induces a distribution over future policies. That

decisiveness of the median in the choice over pure alternatives extends to the choice over

lotteries, under quadratic preferences, is a well known result (Banks and Duggan, 2006b).

Equally well known is the fact that this result does not extend beyond quadratic utilities

(see example following proof of Lemma 2.1 in Banks and Duggan, 2006b).15

4.1 Simple Strategies, Strategic Bliss Points

Definition 4 (Simple proposal strategies). The simple pure stationary Markov proposal

strategy of i ∈ N is

pi(x|x̂i) =


min{da(x), x̂i} if i ∈ Na

x̂m if i = m

max{db(x), x̂i} if i ∈ Nb

where x̂i is the strategic bliss point of i.

Given a profile of strategic bliss points x̂ = {x̂1, . . . , x̂n} a profile of simple proposal

(and implied voting) strategies is σ = (p1, . . . , pn). With pi fully determined by x̂i, we

abuse terminology somewhat and also call x̂i the proposal strategy of i and x̂ the profile

of strategies.

The following example illustrates the shape of the simple strategies in a strongly sym-

metric G with three players for a profile of strategic bliss points that constitutes an SMPE,

as we prove below.16

15 Alternative voting rules, with a veto player, or decision making protocols, with a representative voter,
would not necessitate quadratic stage utilities for the social acceptance set to be driven by preferences
of a unique player. Our approach to equilibrium construction would be applicable to these alternative
models as well, even with general stage utilities.

16 Unless specified otherwise, the policy space in all the examples is X = R.
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Example 1. Consider G with n = 3, xi = i and ri = 1
n

for ∀i ∈ N and δ = 0.9. Figure 1

illustrates the profile of simple strategies induced by these parameters along with a profile

of strategic bliss points x̂ = {1.6, 2, 3}.

Figure 1: Simple strategies in Example 1

pi(x|x̂i)

x1 2 3

x1 = 1

x̂1 = 1.6

x2 = x̂2 = 2

x3 = x̂3 = 3

p1(x|x̂1)

p2(x|x̂2)

p3(x|x̂3)

Let us first explain the rationale behind calling x̂i strategic bliss points. x̂i is the policy

i proposes when the status-quo gives her ample bargaining power, that is, when i is not

constrained by the acceptance set of the median. In Lemma 2 below we prove that the

acceptance set is A(x) = [db(x), da(x)]. Hence i can propose x̂i when x /∈ (1.6, 2.4) for

i = 1 and x /∈ (1, 3) for i = 3. Not being constrained means i can propose the policy

maximizing her dynamic utility Ui, her strategic bliss point. Notice also that meaning of

‘ample bargaining power’ is relative to the given profile of (equilibrium) strategies inducing

the acceptance correspondence A.

The reason x̂i and xi differ is because the former policy maximizes dynamic utility

Ui = ui + δVi, whereas the latter policy maximizes (static) utility ui. Take player 1 from

Example 1 and suppose the status-quo x = 1. We claim p1(1) = 1.6 whereas the policy

maximizing u1 is x1 = 1. With x = 1, A(1) = [1, 3] hence x1 = 1, if proposed, would be

accepted. The reason x1 = 1 6= x̂1 = 1.6 is that in the dynamic setting player 1 takes

into account the impact of her proposal on the distribution of future policies. Two such

distributions, induced by proposing x1 = 1 and p1(1) = 1.6, are indicated by the (red)

circles to left of x = 2 in Figure 1. By proposing p1(1) = 1.6, as opposed to proposing

x1 = 1, player 1 foregoes the chance to maximize her static utility but brings future policy

of player 3 from p3(1) = 3 to p3(1.6) = 2.4. That is, player 1 moderates her proposal, she

foregoes (current) static utility, in an attempt to constrain the future policy of player 3,
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increasing her future utility when she is not in possession of proposal power. The incentive

to moderate is purely strategic; absent the intertemporal link created by persistent policies,

player 1 would propose x1 = 1.

Furthermore, we claim that player 3 from Example 1 does not moderate and her

strategic bliss point coincides with her bliss point. Clearly, the strategic force to moderate

is present for player 3 as well. Take status-quo x = 3. We claim player 3 proposes p3(3) = 3

instead of moderating and proposing, using the same extent of moderation as player 1,

p′ = 2.4. Both p3(3) = 3 and p′ = 2.4 would be accepted with status-quo x = 3 and

lead to the distribution over future policies indicated by the (blue) circles to the right of

x = 2 in Figure 1. The reason player 3 does not moderate is because proposing p′ = 2.4

or p3(3) = 3 induces the same future policy by player 1, p1(2.4) = p1(3) = 1. In order to

constrain the future policy of player 1, player 3 would have to moderate to some policy

in [2, 2.4), which is too costly for her in terms of foregone current utility. In other words,

moderation is a strategic substitute; when player 1 moderates, the best response for player

3 is not to moderate, and when player 1 does not moderate, player 3 best responds by

moderating.17

To proceed, given x̂ and induced σ, we define several objects required in the analysis

below. By ND(σ) = {x̂m, db(x̂1), da(x̂1), . . . , db(x̂n), da(x̂n)} we denote the set of points

such that, for any x ∈ ND(σ), there exists at least one pi that is not differentiable with

respect to x at x. D(σ) = X \ND(σ) denotes the set such that x ∈ D(σ) implies that all

the strategies are differentiable with respect to x at x.18

For ∀x ∈ D(σ) define C(x|σ) = {i ∈ N |p′i(x|x̂i) = 0} to be the set of players who,

at x, are on the constant part of pi (judging by its derivative). Similarly, for ∀x ∈ D(σ)

define NC(x|σ) = {i ∈ N |p′i(x|x̂i) 6= 0} to be the set of players who, at x, are on the

non-constant part of pi. It is easy to check that C(x|σ)∪NC(x|σ) = N for ∀x ∈ D(σ). We

deliberately leave C and NC undefined for x ∈ ND(σ) as the interpretation of constant

and non-constant has no meaning at points in ND(σ). Despite C being a correspondence,

define its one-sided limits at any x ∈ ND(σ), C(x−|σ) and C(x+|σ), as C(x−|σ) = {i ∈
17 The insight that in any SMPE at least one player does not moderate goes beyond the simple strategies

considered here. In fact, the following claim can be easily proven. Consider any profile of pure proposal
strategies σ̂ such that, for ∀i ∈ N \ {m}, p̂i(x) = x̂i for ∀x /∈ (db(x̂i), da(x̂i)) with d(x̂i) < d(xi). That
is, for ∀i ∈ N \ {m}, i moderates to x̂i whenever the status-quo x satisfies x ≤ db(x̂i) or x ≥ da(x̂i).
Then σ̂ cannot constitute an SMPE. The intuition is, using without loss of generality d(x1) ≤ d(xn) and
d(x̂i) ≤ d(x̂n) for ∀i ∈ N \ {m}, that Vn is constant on X \ (db(x̂n), da(x̂n)), Un inherits the shape of un
and thus Un(x̂n) < Un(xn). That is, n has no incentive to moderate to x̂n.

18 This is not entirely precise. If x̂i = xm for ∀i ∈ N all pi are constant and hence differentiable on
X. ND(σ) should be understood as the set of points at which some pi might not be differentiable. As we
are primarily concerned with taking derivatives when these do not exist, that is with D(σ), this is a mere
imprecision in the label for ND(σ).
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N |p′i(x−|x̂i) = 0} and C(x+|σ) = {i ∈ N |p′i(x+|x̂i) = 0}. Similarly, for any x ∈ ND(σ),

NC(x−|σ) = {i ∈ N |p′i(x−|x̂i) 6= 0} and NC(x+|σ) = {i ∈ N |p′i(x+|x̂i) 6= 0}.19

For ∀x ∈ D(σ) define rnc(x|σ) =
∑

i∈NC(x|σ) ri to be the sum of recognition probabilities

of players on the non-constant part of their strategy. Splitting rnc into the probabilities of

recognition for players in Na and Nb, we have rnc,a(x|σ) =
∑

i∈NC(x|σ)∩Na ri and rnc,b(x|σ) =∑
i∈NC(x|σ)∩Nb ri with rnc(x|σ) = rnc,a(x|σ) + rnc,b(x|σ) for ∀x ∈ D(σ). These objects are

undefined at x ∈ ND(σ), nevertheless they possess one-sided limits at these points (defined

using one-sided limits of NC).20

For ∀i ∈ N \ {m} define the (possibly empty) sets

Si(σ) =

ND(σ) ∩ (x̂i, xi) if i ∈ Na

ND(σ) ∩ (xi, x̂i) if i ∈ Nb

Li(σ) = {x ∈ D(σ)|U ′i(x|σ) = 0}

Ni(σ) =

((ND(σ) ∪ Li(σ)) ∩ (x̂i, xi)) ∪ {xi, x̂i} if i ∈ Na

((ND(σ) ∪ Li(σ)) ∩ (xi, x̂i)) ∪ {xi, x̂i} if i ∈ Nb

(6)

with elements of Ni(σ) ordered in increasing (decreasing) order if i ∈ Na (i ∈ Nb). Si(σ)

is the set of points in the interval between x̂i and xi at which pj is not differentiable for

some j ∈ N . Ni(σ) is a similar set of points adding points of local maxima of Ui(σ), Li(σ),

and x̂i and xi. We are well aware that all ND, D, C, NC, rnc, rnc,a, rnc,b, Si, Li and Ni, as

well as the previously defined pi, Vi, Ui and A, are defined relative to x̂ and hence relative

to σ. We suppress the dependence of these objects on σ when confusion cannot arise (as

we have already done in Example 1).

Lemma 1 (Minimal properties of SMPE x̂). If a profile of simple stationary Markov

strategies σ induced by a profile of strategic bliss points x̂ constitutes an SMPE, then

x̂i ≥ xm for ∀i ∈ Na, x̂i ≤ xm for ∀i ∈ Nb and x̂m = xm.

Proof. See appendix A1

19 One-sided limits of C and NC at any x ∈ D(σ) are defined similarly. It is easy to see that NC and
C are both piecewise ‘constant’ on intervals determined by ND(σ) and hence, for ∀x ∈ D(σ), C(x|σ) =
C(x+|σ) = C(x−|σ) and NC(x|σ) = NC(x+|σ) = NC(x−|σ).

20 For any profile of strategic bliss points x̂ and σ it induces, pi(da(x)|x̂i) = pi(db(x)|x̂i) for ∀x ∈ X and
∀i ∈ N . Hence, for ∀x ∈ D(σ), C(da(x)|σ) = C(db(x)|σ), NC(da(x)|σ) = NC(db(x)|σ), rnc,a(da(x)|σ) =
rnc,a(db(x)|σ) and rnc,b(da(x)|σ) = rnc,b(db(x)|σ). For ∀x ∈ X, C(da(x)−|σ) = C(db(x)+|σ) and
C(da(x)+|σ) = C(db(x)−|σ) and similarly for NC, rnc,a and rnc,b are all easy to check. Furthermore, for
any x ∈ D(σ) and y ∈ D(σ) such that d(x) ≤ d(y), NC(y|σ) ⊆ NC(x|σ) and thus rnc,a(y|σ) ≤ rnc,a(x|σ)
and rnc,b(y|σ) ≤ rnc,b(x|σ). Because NC is piecewise constant on intervals determined by ND(σ), rnc,
rnc,a and nc,b are as well.
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Lemma 2 (Properties of Vi and Ui induced by x̂). For any x̂ with x̂i ≥ xm for ∀i ∈ Na,

x̂i ≤ xm for ∀i ∈ Nb and x̂m = xm and induced profile of simple strategies σ, for ∀i ∈ N ,

1. Vi(db(x)|σ) = Vi(da(x)|σ) for ∀x ∈ X;

2. Ui(db(x)|σ) < Ui(da(x)|σ) if i ∈ Na, Ui(db(x)|σ) > Ui(da(x)|σ) if i ∈ Nb and

Um(db(x)|σ) = Um(da(x)|σ), for ∀x ∈ X \ {xm};

3. Ui is continuous on X;

4. U ′′i (x|σ) < 0 for ∀x ∈ D(σ);

5. Um(x|σ) > Um(y|σ) for ∀x ∈ X, ∀y ∈ X such that d(x) < d(y);

6. A(x|σ) = [db(x), da(x)] for ∀x ∈ X.

Proof. See appendix A1

In addition to several technical properties of Vi and Ui induced by x̂, Lemma 2 demon-

strates the shape of the social acceptance set A. Because pi(x|x̂i) ∈ [db(x), da(x)] for

∀i ∈ N and ∀x ∈ X whenever x̂ satisfies the requirements of the lemma, any proposal

generated by a simple strategy based on such x̂ belongs to the social acceptance set induced

by x̂.

We now specify the algorithm that derives a profile of strategic bliss points x̂. The

simple strategies in combination with x̂ from the algorithm need not constitute an SMPE.

At this stage we view x̂ and the profile of strategies σ it induces as a candidate for SMPE.

Algorithm 1 (Strategic bliss points with X ⊆ R). For the set of players Pt in step t of

the algorithm, denote rt,a =
∑

i∈Pt∩Na ri and rt,b =
∑

i∈Pt∩Nb ri.

step 0 Set x̂m = xm and P1 = N \ {m}

step t For i ∈ Pt compute

x̂i,t =

xi + 2δrt,b(xm − xi) if i ∈ Na

xi + 2δrt,a(xm − xi) if i ∈ Nb

Define Rt = {i ∈ Pt|(xi − xm)(x̂i,t − xm) ≤ 0}
If Rt = ∅, select one j ∈ arg mini∈Pt d(x̂i,t), set x̂j = x̂j,t

If Rt 6= ∅, select one j ∈ Rt, set x̂j = xm

Set Pt+1 = Pt \ {j} and if Pt+1 6= ∅, proceed to step t+ 1
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It is immediately clear that the algorithm finishes in n − 1 steps and produces a full

profile of strategic bliss points x̂ with x̂i ∈ [xm, xi] if i ∈ Na and x̂i ∈ [xi, xm] if i ∈ Nb.

Further, it is easy to check that x̂i ≤ x̂i+1 for i ∈ N \ {n} and that x̂i = xi for i = 1 or

i = n but not both (unless δ = 0).

The intuition behind the algorithm is as follows. It starts with a full set of players apart

from the median. It conjectures that strategy of all these players will be characterized by

strategic bliss points equal to +∞ for i ∈ Na and −∞ for i ∈ Nb, that is players in Na

proposing da(x) and players in Nb proposing db(x). Calculating Ui for this conjectured

strategy, the algorithm computes x̂i,1 which is a policy at which Ui attains its maximum.

At x̂i,1 it ceases to be optimal for i to propose da(x) or db(x) and the best response, for

any status-quo further from xm relative to x̂i,1, is to propose x̂i,1. The algorithm then

drops the player with x̂i,1 closest to xm as the first player for whom, moving status-quo

away from xm, the conjectured strategy ceases to be a best response. Proceeding to step

2, the algorithm conjectures that the strategy of all players not previously dropped will

be characterized by bliss points equal to +∞ and −∞ and continues similarly.

There are two possible complications. The first one arises when the algorithm arrives

at x̂i,t and x̂j,t with d(x̂i,t) = d(x̂j,t) and both i and j belong to arg mini∈Pt d(x̂i,t). This

implies i ∈ Na and j ∈ Nb or vice versa, the algorithm requires exactly one of the players

to be dropped, but we have not specified which one. This reflects the strategic substitute

nature of moderation and is the sole reason for SMPE multiplicity. If i is dropped then

j does not want to moderate and the algorithm retains j. If j is dropped then i does

not want to moderate and is retained. That, say, i is retained means that the algorithm

might eventually produce x̂ with i moderating as well. But this moderation is driven by

other players still in the algorithm. In Example 1 dropping j meant i was retained as the

sole player, in which case the algorithm produces x̂i = xi. Example 1 (continued) below

illustrates this complication and highlights the fact that the profile of strategic bliss points

the algorithm produces need not be unique.

The second complication arises when 2δra ≥ 1 or 2δrb ≥ 1 (both cannot hold simulta-

neously as ra + rb = 1 − rm < 1). Suppose 2δra ≥ 1 holds. Then Rt 6= ∅, Rt ⊆ Nb and

Rt ∩ Na = ∅ for ∀t ∈ {1, . . . , n−1
2
} which means that the algorithm sequentially drops all

the Nb players in steps t ∈ {1, . . . , n−1
2
} and x̂i = xm for ∀i ∈ Nb. That is, the proposal

strategies of all the Nb players are identical to the proposal strategy of the median player.

Intuitively, when the Na players are very likely to propose, the strategic force pushing the

Nb players towards moderation is very strong, dominates any concerns for current utility

and the greatest extent of constraint the Nb players can impose on the Na players is by

proposing xm. When this happens, the algorithm also produces x̂i = xi for ∀i ∈ Na, that
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is, the Na players do not moderate. Example 2 below illustrates this complication.

The strategic bliss point of player i from Algorithm 1, via the simple strategy pi(x|x̂i),
determines the extent of moderation of player i. From the algorithm, unless x̂i = xm,

x̂i = xi + 2δr(xm − xi) where r is the probability of recognition of i’s opponents. Player

i thus moderates to a larger extent with increasing δ and r. Both variables reinforce the

strategic incentive to moderate and x̂i increases when i ∈ Nb and decreases when i ∈ Na.

Example 1 (continued). In step 0 the algorithm drops the median player and sets x̂2 =

x2 = 2. In step 1 the algorithm computes x̂1,1 = 1.6 and x̂3,1 = 2.4 and, by dropping player

1, produces x̂3 = x̂3,2 = 3 as already anticipated in Figure 1, which used x̂ = {1.6, 2, 3}.
Notice that dropping player 3 in step 1 would produce a profile of strategic bliss points

x̂ = {1, 2, 2.4}, which is distinct but symmetric around xm.

Example 2 (Players proposing identically as median). Consider G with n = 5, xi = i for

∀i ∈ N , r = {0.4, 0.4, 0.1, 0.05, 0.05} and δ = 0.9. It is easy to confirm that R1 = {4, 5}
with the algorithm dropping player 4 and R2 = {5} with the algorithm dropping player 5.

After two more steps, the algorithm produces x̂ = {1, 2, 3, 3, 3}.

The following parametrization is taken from Duggan and Kalandrakis (2007). They

numerically compute an SMPE in a model with preference and status-quo transition noise

our setup lacks, but our methodology is fully applicable to the noise-less version of their

model.

Example 3 (Duggan and Kalandrakis (2007) parametrization). Consider G with n = 5,

x = {1, 1.5, 2, 2.8, 3}, ri = 1
n

for ∀i ∈ N and δ = 0.9. The algorithm eliminates players 2,

1, 4, and 5 in steps 1 through 4 respectively and produces a unique profile of strategic bliss

points x̂ = {1.72, 1.86, 2, 2.8, 3}.

The following lemma summarizes the key properties of any profile of strategic bliss

points produced by Algorithm 1. The real significance of the lemma arises from Proposition

2 that follows.

Lemma 3 (Characterization of x̂ from Algorithm 1). Let x̂ be a profile of strategic bliss

points produced by Algorithm 1. Then

1. if δ = 0, then x̂ = x;

2. if δ ∈ (0, 1) and 1 ≤ 2δrg for some g ∈ {a, b}, then x̂i = xm for ∀i ∈ N \ Ng and

x̂i = xi for ∀i ∈ Ng;
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3. if δ ∈ (0, 1), 1 > 2δra and 1 > 2δrb, then x̂i < x̂i+1 for ∀i ∈ N\{n} and d(x̂i) 6= d(x̂j)

for ∀i ∈ N , ∀j ∈ N , i 6= j.

Proof. See appendix A1

Proposition 2. Let X̂ be the set of profiles of strategic bliss points produced by Algorithm

1. If σ induced by x̂ constitutes an SMPE, then x̂ ∈ X̂.

Proof. See appendix A1

Proposition 2 states that if a profile of strategic bliss points x̂ that induces SMPE σ

exists, then x̂ is produced by Algorithm 1. Lemma 3 thus not only characterizes any x̂

produced by Algorithm 1, it also constitutes a characterization of SMPE in simple proposal

strategies.21 In addition, Proposition 2 implies that #X̂, the number of different profiles

of strategic bliss points produced by the algorithm, puts an upper bound on the number of

SMPE in simple proposal strategies. If Algorithm 1 produces a unique x̂, then an SMPE

in simple strategies is either unique or fails to exist.22

From the way the algorithm constructs x̂, #X̂ ≥ 2 is possible only if it in step t

arrives at x̂i,t and x̂j,t with d(x̂i,t) = d(x̂j,t). The equality rewrites as d(xi)(1 − 2δrt,b) =

d(xj)(1 − 2δrt,a) and is non-generic. That is, a perturbation of x by ε > 0, x(ε), exists,

such that Algorithm 1 applied to G(ε) = 〈n,x(ε), r, δ,X〉 produces unique x̂(ε). In fact,

any x̂ ∈ X̂ can be approached by unique x̂(ε). The following lemma states this result

formally and its proof constructs the claimed perturbation.

Lemma 4. Fix any x̂ ∈ X̂ from Algorithm 1 applied to G. Then a perturbation of x

by ε > 0, x(ε), and ε̄ > 0 exist, such that limε→0 x(ε) = x and Algorithm 1 applied to

G(ε) = 〈n,x(ε), r, δ,X〉, for ∀ε ≤ ε̄, produces a unique profile of strategic bliss points x̂(ε)

such that limε→0 x̂(ε) = x̂.

Proof. See appendix A1

21 The lemma states that even when G is strongly symmetric and δ ∈ (0, 1), no two strategic bliss
points can be the same distance from the median bliss point. The reason is the strategic substitute nature
of moderation. If n = 5, player 2 starts moderating when the status-quo is distance d(x̂2) from x3 = xm.
It cannot be SMPE for player 4 to start moderating at d(x̂4) = d(x̂2); if player 2 starts at d(x̂2) it is
optimal for player 4 to start at d(x̂′4) > d(x̂2), if player 4 starts at d(x̂4) it is optimal for player 2 to start
at d(x̂′2) > d(x̂4). Lemma 3 with Proposition 2 imply that the example of full equilibrium characterization
in Baron (1996, based on strategic bliss points in his equation (18) and summarized in his Table 1) cannot
constitute an SMPE.

22 We stress that all the uniqueness statements pertain to SMPE in simple strategies and should be
read as referring to the uniqueness of SMPE in the class of SMPE in simple strategies.
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4.2 Necessary and Sufficient Conditions

We are ready to state two conditions that guarantee that a profile of strategic bliss points

x̂ from Algorithm 1 induces SMPE σ.23

Definition 5 (Condition S, sufficient). A profile of strategic bliss points x̂ from Algorithm

1 that induces σ satisfies condition S if and only if, for ∀i ∈ N \ {m} and ∀x ∈ Si(σ),

x− xi − 2δrnc,b(x
+|σ)(xm − xi) ≥ 0 if i ∈ Na

x− xi − 2δrnc,a(x
−|σ)(xm − xi) ≤ 0 if i ∈ Nb.

(S)

Definition 6 (Condition N, necessary and sufficient). A profile of strategic bliss points x̂

from Algorithm 1 that induces σ satisfies condition N if and only if, for ∀i ∈ N \ {m} and

denoting elements of Ni(σ) by {z0, z1, . . .},

∑J

j=1

[
Ti(x|σ)

]z+j−1

z−j

≥ 0 for ∀J ∈ {1, . . . , |Ni(σ)| − 1} if i ∈ Na∑J

j=1

[
Ti(x|σ)

]z−j−1

z+j

≥ 0 for ∀J ∈ {1, . . . , |Ni(σ)| − 1} if i ∈ Nb

(N)

where

Ti(x|σ) = − 2

1− δrnc(x|σ)

[
x2

2
− ci(x|σ)x

]

ci(x|σ) =

xi + 2δrnc,b(x|σ)(xm − xi) if i ∈ Na

xi + 2δrnc,a(x|σ)(xm − xi) if i ∈ Nb.

Proposition 3 (SMPE under S and N conditions). A profile of strategic bliss points x̂

from Algorithm 1 induces SMPE σ

1. if x̂ satisfies condition S;

2. if and only if x̂ satisfies condition N.

Proof. See appendix A1

The reason both S and N guarantee that the simple strategies induced by x̂ constitute

an SMPE is the following. First note that player i ∈ Na would never propose policy p < xm

23 Both conditions apply to profiles of strategic bliss points from Algorithm 1. By Proposition 2 this is
without loss of generality as the algorithm constructs all x̂ that support an SMPE for given G. An alter-
native method would be to state both conditions for general x̂ such that x̂i ∈ [min {xm, xi},max {xm, xi}]
for ∀i ∈ N , which is a property of any x̂i from Algorithm 1 and hence, by Proposition 2, of any x̂ that
induces SMPE σ.
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due to symmetry, around xm, of the acceptance sets A and of the continuation value

functions Vi. Furthermore, in the proof of the proposition we show that Ui is increasing

on [xm, x̂i] and decreasing on [xi,+∞). However, for the simple strategy with x̂i to be

the best response to the strategies of the other players, Ui must be decreasing on [x̂i, xi]

as well. From Lemma 2 we know Ui is piecewise strictly concave, which means ensuring

that the right derivative of Ui is non-positive, at any point in ND that falls into (x̂i, xi),

suffices for Ui to be decreasing on [x̂i, xi]. This is what condition S does. When it holds, Ui

is increasing on [xm, x̂i] and decreasing on [x̂i,+∞), implying that proposing da(x) when

the status-quo x is such that x̂i /∈ A(x) and proposing x̂i otherwise is optimal for i.

Note that condition S is stronger than necessary. It ensures that Ui is decreasing on

[x̂i, xi] while for x̂i to be optimal for i ∈ Na, only Ui(x̂i) ≥ Ui(x) for ∀x ≥ x̂i is required.

This is what condition N does. It only looks at a finite set of points using the fact that Ui

is piecewise quadratic and Ui(x)− Ui(y) =
[∫

∂
∂z
Ui(z)dz

]x
y
.

Despite the fact that both conditions guaranteeing the existence of SMPE only need to

be checked at a finite set of points, their disadvantage is that they apply to the strategic

bliss points from Algorithm 1. Relating these conditions directly to the parameters defining

G is non-trivial due to the complicated mapping from n, x, r and δ to x̂. This is why

in the next section we look at symmetric environments. Putting enough structure on the

parameters defining G will allow us to relate (mainly) condition S to these parameters.

We have explained that the incentive of the players to moderate is driven by their

concern about the future policy outcomes. It is natural to conjecture that when the

players are almost myopic, the strategic bliss points x̂ differ little from x and hence induce

SMPE σ. The following proposition derives conditions such that the conjecture is indeed

true.

Proposition 4 (Condition N holds for small δ). If ri ∈ [
rj
2
, 2rj] for every pair of players

{i, j} with d(xi) = d(xj), then δ̄ ∈ (0, 1) exists, such that for ∀δ ≤ δ̄ any x̂ from Algorithm

1 satisfies condition N.

Proof. See appendix A1

Before we proceed we provide two examples. The first shows that despite the apparent

complexity of conditions S and N these can be simple to verify. The second example shows

that whether these conditions are satisfied or not can depend non-monotonically on δ. It

is also easy to see that both of the conditions hold in Examples 2 and 3.

Example 1 (continued). With x = {1, 2, 3} and x̂ = {1.6, 2, 3}, the set of points at

which differentiability of (at least some of) the proposal strategies might fail is ND =

20



{1, 1.6, 2, 2.4, 3}. The subset of players on the non-constant part of their strategy is

NC(x) =


{1, 3} for x ∈ (1.6, 2) ∪ (2, 2.4)

{3} for x ∈ (1, 1.6) ∪ (2.4, 3)

∅ for x ∈ (−∞, 1) ∪ (3,+∞)

which induces rnc,a(x) = 1
3

for x ∈ (1, 2) ∪ (2, 3) and rnc,b(x) = 1
3

for x ∈ (1.6, 2) ∪ (2, 2.4)

with both rnc,a and rnc,b equal to 0 for any other x ∈ X \ ND.

Because S1 = ND ∩ (1, 1.6) = ∅ and S3 = ND ∩ (3, 3) = ∅ and because L1 = L3 = ∅,
we have N1 = {1, 1.6} and N3 = {3}. Conditions S and N hold, which, by Proposition 3,

implies σ induced by x̂ = {1.6, 2, 3} constitutes an SMPE.

Example 4 (Non-monotonic failure of S and N conditions). Consider G with n = 7, xi = i

and ri = 1
n

for ∀i ∈ N and δ = 0.5. Then Algorithm 1 produces eight different profiles

of strategic bliss points x̂ (depending on the selection of players to drop). For every x̂,

condition S, and by implication condition N, holds. For the same G with δ = 0.9 the

number of x̂ from Algorithm 1 reduces to two but both fail both S and N conditions. For

the same G with δ = 0.95 there are again two possible x̂ and for both condition S fails

while condition N holds.

5 Equilibrium Existence in Symmetric Games

Recall that G is symmetric if any pair of players {dIb(i), dIa(i)} has equal recognition prob-

abilities and bliss points at the same distance from xm. This implies ra = rb <
1
2

and that

rej , the sum of the recognition probabilities of the j < m most extreme players {1, . . . , j},
is equal to the sum of the recognition probabilities of players {dIa(j), . . . , n}.

The definition that follows guarantees that Algorithm 1 drops players {m− 1,m+ 1}
in steps t ∈ {1, 2}. In step t = 1, the algorithm offers an option to drop either one of

these two players, and in step t = 2 drops the player not eliminated in step t = 1. In

steps t ∈ {3, 4} the algorithm drops players {m − 2,m + 2} in a similar manner and the

same happens in any steps {t, t+ 1} with t odd. This is what condition G1 ensures. The

resulting structure of x̂ along with symmetry of G allows us to write condition G2 which,

as we prove in Proposition 5, guarantees that x̂ satisfies condition S and hence induces

SMPE σ. Notice that both conditions are written in terms of parameters of G.

Definition 7 (Pairwise moderation inducing G). G induces pairwise moderation if and
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only if G is symmetric, for ∀i ∈ {1, . . . , n−3
2
}

1− 2δrei
1− 2δrei+1

≤ xm − xi
xm − xi+1

(G1)

and for ∀i ∈ {1, . . . , n−3
2
} and ∀j ∈ {1, . . . , i}

1− 2δrej−1
1− 2δrej

≤ xm − xj
xm − xi+1

. (G2)

The complexity of the conditions defining pairwise moderation inducing G is driven by

our attempt to write them for a general class of symmetric games as much as possible.24 In

fact, any symmetric G induces pairwise moderation if the players are sufficiently impatient.

Lemma 5. For any symmetric G, δ̄ ∈ (0, 1) exists such that G induces pairwise moderation

for ∀δ ≤ δ̄.

Proof. Conditions G1 and G2 clearly hold for δ = 0. In both conditions, the right hand

side is strictly greater than unity, the left hand side is equal to unity for δ = 0 and is

increasing in δ. �

There are two conditions defining pairwise moderation inducing G and we explained

their rationale above. However, condition G2 proves to be redundant in certain ‘well

behaved’ games satisfying ‘monotonicity’ of the recognition probabilities or of the distances

between the bliss points of adjacent players.

Lemma 6. If condition G1 co-defining pairwise moderation inducing G holds, then G2 in

the same definition holds if at least one of the following conditions are satisfied.

1. ri ≤ ri+1 for ∀i ∈ {1, . . . , n−3
2
}

2. xi − xi−1 ≤ xi+1 − xi for ∀i ∈ {2, . . . , n−3
2
} and 1

1−2δr1 ≤
xm−x1
xm−x2

Proof. See appendix A1

For strongly symmetric games with equidistant bliss points and equal recognition prob-

abilities, the conditions defining pairwise moderation inducing G become trivial to verify.

24 To understand G1 and G2, after dropping player m − 1 in step 1, Algorithm 1 in step 2 calculates
x̂m+1,2 = xm+1 + 2δrem−2(xm − xm+1) and x̂m−2,2 = xm−2 + 2δrem−1(xm − xm−2). G1 is then the general
version of the condition ensuring m + 1 is dropped, d(x̂m+1,2) ≤ d(x̂m−2,2). When the algorithm drops
player dIa(j) at a further step, db(x̂dIa(j)) ∈ Sm−1, among other values, needs to satisfy condition S. With
db(x̂dIa(j)) = xj +2δrej (xm−xj), the condition requires db(x̂dIa(j))−xm−1−2δrej−1(xm−xm−1) ≤ 0, which

rewrites as G2. Because, say, G1 rewrites as 2δri+1

1−2δrei+1
≤ xi+1−xi

xm−xi+1
, both conditions put an upper bound on

the incentive to moderate driven by δ and ri+1.
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Lemma 7. Symmetric G with n = 3 induces pairwise moderation. Strongly symmetric G
with n ≥ 5 and δ ≤ n

n+1
induces pairwise moderation.

Proof. Symmetric G with n = 3 obviously induces pairwise moderation as it is symmetric

and the parametric conditions in Definition 7 apply only for n ≥ 5.

For strongly symmetric G, rei = i
n

and xm − xi = (n+1
2
− i)(xm − xm−1) for any

i ∈ {1, . . . , n−1
2
}. Substituting into G1 in Definition 7, which by Lemma 6 suffices, gives

δ ≤ n
n+1

. �

To state the main result of this section we need the following definition. As we explained

above, condition G1 ensures that Algorithm 1 drops pairs of players {dIb(i), dIa(i)} in pairs

of steps {t, t+1}. For knife edge cases when condition G1 holds with equality, the algorithm

offers the option, in step t = 1, to drop players {m − 1,m + 1} and dropping m + 1, in

step t = 2, offers the option to drop players {m− 1,m + 2}. At this point, for x̂ to have

the structure underlying Proposition 5, we have to ensure that player m − 1 is dropped

in step t = 2. That is, we need to ensure that if i ∈ Na is dropped in t = 1 then i ∈ Nb

is dropped in t = 2 and vice versa, whenever the algorithm faces multiple players to be

dropped. A similar selection is necessary at any step t ≥ 3.

Definition 8 (Pairwise path through Algorithm 1). A selection of which players to drop,

whenever a non-unique option arises, in Algorithm 1 is called a pairwise path if and only

if, in step t ≥ 2, i ∈ Na is dropped when j ∈ Nb has been dropped in step t− 1 and i ∈ Nb

is dropped when j ∈ Na has been dropped in step t− 1.

Proposition 5 (SMPE with pairwise moderation). Assume G induces pairwise modera-

tion. Then

1. if δ ∈ (0, 1), 2(n−1)/2 distinct profiles of strategic bliss points x̂ produced by pairwise

paths through Algorithm 1 exist, if δ = 0, x̂ = x;

2. σ induced by any of these profiles of strategic bliss points constitutes an SMPE;

3. σ induced by any of these profiles of strategic bliss points satisfies condition S and,

for ∀i ∈ N , Ui is single peaked on X.

Proof. See appendix A1

Proposition 5 is the main result of this section. It proves the existence of an SMPE

in the large class of games that induce pairwise moderation. To construct an SMPE all

that is needed is a profile of strategic bliss points from Algorithm 1 and simple strategies.
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As already anticipated, the result relies on the fact that pairwise moderation inducing G
delivers x̂ which satisfies condition S. Using Lemma 7, Proposition 5 implies the existence

of SMPE in any symmetric G with n = 3 and any strongly symmetric G with n ≥ 5 and

δ ≤ n
n+1

, a condition which virtually ceases to bind as n increases.

The following examples substantiate our claim that Proposition 5 in fact applies to

a large class of games that are not strongly symmetric. The first two examples assume

monotonicity in the recognition probabilities (Example 5) or in the distance between bliss

points of adjacent players (Example 6). Example 7 takes a strongly symmetric G and

increases the median player’s recognition probability. Example 8 also takes a strongly

symmetric G but increases the distance of bliss points between players {dIb(j) − 1, dIb(j)}
and between players {dIa(j), dIa(j) + 1}. This produces a G with three ‘clusters’ of players,

one around m and two ‘extreme’ clusters. Note also that all the examples state conditions

guaranteeing that the underlying G induces pairwise moderation. All the conditions put

an upper bound on the patience of the players, collapse to δ ≤ n
n+1

when G becomes

strongly symmetric, which is allowed by all the examples, and effectively cease to bind

when n increases.25

Example 5 (More extreme players less/more likely to propose).

Assume G is symmetric with n ≥ 5, xi − xi−1 = xi+1 − xi for ∀i ∈ {2, . . . , n − 1}
and ri ≤ ri+1 for ∀i ∈ {1, . . . , n−3

2
}. Then condition G1 co-defining pairwise moderation

inducing G holds if and only if it holds for i = n−3
2

;26 when G1 holds then G2 holds as

well; and G induces pairwise moderation if and only if δ ≤ 1
2(ra+rm−1)

, which does not bind

if rm−1 ≤ 1
2
− ra = rm

2
.

Assume G is symmetric with n ≥ 5, xi−xi−1 = xi+1−xi for ∀i ∈ {2, . . . , n−1} and ri ≥
ri+1 for ∀i ∈ {1, . . . , n−3

2
}. Then condition G1 co-defining pairwise moderation inducing

G holds if and only if it holds for i = 1; when G1 holds and δ ≤ 1
r1(n−1) then G2 holds as

well; and G induces pairwise moderation if and only if δ ≤ min{ 1
2r1+(n−1)r2 ,

1
r1(n−1)}.

Example 6 (Increasing/decreasing extremism).

Assume G is symmetric with n ≥ 5, xi − xi−1 ≥ xi+1 − xi for ∀i ∈ {2, . . . , n−1
2
}

and ri = ri+1 for ∀i ∈ {1, . . . , n−1
2
}. Then condition G1 co-defining pairwise moderation

inducing G holds if and only if it holds for i = n−3
2

; when G1 holds then G2 holds as well;

25 Examples 5, 6 and 7 also show that the conditions on δ need not bind at all.
26 This claim, as well as the similar claim for i = 1 below, does not follow immediately. We feel

that a formal proof is unnecessary, but are ready to provide it. To outline the idea, the proof uses the
monotonicity of the recognition probabilities and the equidistance of players’ bliss points. For the following
example, a similar proof uses the monotonicity of the distances between players’ strategic bliss points and
equal recognition probabilities.
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and G induces pairwise moderation if and only if δ ≤ n(xm−1−xm−2)
(n−1)(xm−1−xm−2)+2(xm−xm−1)

, which

does not bind if xm−1 − xm−2 ≥ 2(xm − xm−1).

Assume G is symmetric with n ≥ 5, xi − xi−1 ≤ xi+1 − xi for ∀i ∈ {2, . . . , n−1
2
}

and ri = ri+1 for ∀i ∈ {1, . . . , n−1
2
}. Then condition G1 co-defining pairwise moderation

inducing G holds if and only if it holds for i = 1; when G1 holds then G2 holds as well;

and G induces pairwise moderation if and only if δ ≤ n(x2−x1)
2(xm−x1+x2−x1) .

Example 7 (Arbitrary median’s recognition probability).

Assume G is symmetric with n ≥ 5, xi − xi−1 = xi+1 − xi for ∀i ∈ {2, . . . , n− 1} and

ri = 1−rm
n−1 for ∀i ∈ N \ {m}. Then condition G1 co-defining pairwise moderation inducing

G either holds or fails for ∀i ∈ {1, . . . , n−3
2
}; when G1 holds then G2 holds as well; and G

induces pairwise moderation if and only if δ ≤ n−1
n+1

1
1−rm , which does not bind if rm ≥ 2

n+1
.

Example 8 (Clusters of players).

Assume G is symmetric with n ≥ 5, xi − xi−1 = d for ∀i ∈ {2, . . . ,m} \ {j}, xj −
xj−1 = d + e with e ≥ 0 where 2 ≤ j ≤ m and ri = ri+1 for ∀i ∈ {1, . . . , n−1

2
}. Then

condition G1 co-defining pairwise moderation inducing G holds if and only if it holds for

∀i = {1, . . . , j − 2} ∪ {n−3
2
}; when G1 holds then G2 holds as well; and G induces pairwise

moderation if and only if δ ≤ n

(n+1)+2
ej
d

where ej = 0 if j = 2 and ej = e if j ∈ {3, . . . ,m}.

Proposition 5 shows that 2(n−1)/2 SMPE exist for any G that induces pairwise moder-

ation, all based on profiles of strategic bliss points delivered by Algorithm 1. In Lemma

4, we have shown that the multiplicity of x̂ from Algorithm 1 is non-generic and can be

perturbed away. The lemma, however, is silent about the ability of the perturbed x̂(ε) to

support SMPE σ(ε). Our next proposition shows that it is indeed possible to perturb x

without upsetting the ability of the profile of strategic bliss points from Algorithm 1 to

support an SMPE.

Proposition 6. Assume G induces pairwise moderation. Fix any x̂ produced by pairwise

path through Algorithm 1. Then a perturbation of x by ε > 0, x(ε), and ε̄ > 0 exist,

such that limε→0 x(ε) = x and Algorithm 1 applied to G(ε) = 〈n,x(ε), r, δ,X〉, for ∀ε ≤
ε̄, produces a unique profile of strategic bliss points x̂(ε) that satisfies condition S and

limε→0 x̂(ε) = x̂.

Proof. See appendix A1

In addition to showing the non-generic nature of the multiplicity of SMPE in pairwise

moderation inducing G, Proposition 6 shows that the equilibrium correspondence mapping

G into the set of SMPE in simple strategies is upper hemicontinuous in x, SMPE exists
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as x(ε) → x and continues to exist at the limit of the sequence, at x. However, it fails

lower hemicontinuity. Only one of the equilibria that exists at x can be approached by

the unique SMPE that exists along x(ε)→ x.

Throughout this section, our focus has been on games that induce pairwise moderation.

For strongly symmetric G, this implied restricted focus on δ ≤ n
n+1

. Despite the fact that

this condition becomes rather weak as n increases, a natural question arises about the

existence and properties of SMPE as δ → 1. The following proposition shows that for

high enough δ, at least two SMPE supported by x̂ from Algorithm 1 exist.

Proposition 7 (Patient players in strongly symmetric G).

Assume G is strongly symmetric, n ≥ 5, and δ ≥ δ̄(n) where

δ̄(n) = max
{

n
n+1

, n
n−3

[
2n−2
n−1 −

√
n3−n2−n−7

(n−1)3

]}
< 1.

Then

1. two profiles of strategic bliss points x̂ produced by Algorithm 1 exist with, for g ∈
{a, b}, x̂m = xm, x̂i = xi for ∀i ∈ Ng and d(x̂i) ∈ (0, d(xm−1)) for ∀i ∈ N\(Ng∪{m});

2. σ induced by any of these profiles of strategic bliss points constitutes an SMPE.

Proof. See appendix A1

Suppose g = a in part 1 of the proposition. Then for any δ ≥ δ̄(n), x̂ that induces

SMPE σ exists. This x̂ is characterized by x̂i = xi for ∀i ∈ Na ∪ {m} and x̂i ∈ (xm−1, xm)

for ∀i ∈ Nb. In words, all the players in Nb moderate while none of the players in Na do.

In the proof of the proposition we show that x̂i = xi + δ n−1
n

(xm − xi) for the moderating

players. As a result limn→∞ limδ→1 x̂i = xm so that proposal behaviour of any moderating

player in an SMPE of large G with patient players resembles the proposal behaviour of

the median player.

From Lemma 7 we know that symmetric G with n = 3 induces pairwise moderation

which, by Proposition 5, implies SMPE existence for any δ. For strongly symmetric G with

n ≥ 5, the same lemma requires δ ≤ n
n+1

. Because δ̄(n) = n
n+1

for n = 5, Propositions 7,

5 and Lemma 7 jointly imply SMPE existence in any strongly symmetric G with n = 5.

When δ ≤ n
n+1

, any x̂ produced by a pairwise path through Algorithm 1 induces SMPE

σ. When δ ≥ n
n+1

, any x̂ from Proposition 7 induces SMPE σ.

Corollary 1. An SMPE exists in strongly symmetric G with n = 5.
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For strongly symmetric G with more than five players, δ̄(n) > n
n+1

for any n ≥ 7,

leaving a gap in the range of discount factors covered by Propositions 5 and 7.27 On the

other hand, from the arguments presented in the proof of Proposition 7, when δ > n
n+1

then Algorithm 1 produces exactly two profiles of strategic bliss points, the two profiles

supporting SMPE in Proposition 7. From Proposition 2 we then know that exactly two

SMPE in simple strategies exist.

Corollary 2. Exactly two SMPE in simple proposal strategies exist in strongly symmetric

G if n = 5 and δ > n
n+1

or if n ≥ 7 and δ ≥ δ̄(n).

Recalling Lemma 4, the duplicity of SMPE the corollary shows is non-generic. Each

SMPE is supported by x̂ that can be approached by the sequence of unique profiles of

strategic bliss points Algorithm 1 produces for perturbed G. The following proposition

shows that it is indeed possible to approach x̂ in such a way that, along the sequence, all

profiles of strategic bliss points support an SMPE.

Proposition 8. Assume G is strongly symmetric with n = 5 and δ > n
n+1

or with n ≥ 7

and δ ≥ δ̄(n). Fix x̂ to be one of the two profiles of strategic bliss points from Algorithm

1. Then a perturbation of x by ε > 0, x(ε), and ε̄ > 0 exist, such that limε→0 x(ε) = x

and Algorithm 1 applied to G(ε) = 〈n,x(ε), r, δ,X〉, for ∀ε ≤ ε̄, produces a unique profile

of strategic bliss points x̂(ε) that satisfies condition N and limε→0 x̂(ε) = x̂.

Proof. See appendix A1

The proposition shows that for any strongly symmetric G with patient players, an

essentially unique SMPE in simple strategies exists. Because limε→0 x̂(ε) = x̂, we know

that in the SMPE, all players with bliss points on one side of the median moderate while

their opponents do not. The perturbation required for SMPE uniqueness is constructed

in the proof of the proposition, but its structure is very simple. x(ε) used to approach x̂

with x̂i = xi for ∀i ∈ Na ∪{m} is xi(ε) = xi for ∀i ∈ N \ {m− 1} and xm−1(ε) = xm−1− ε.
If the most moderate player in Nb, m− 1, has a stronger incentive to moderate than the

most moderate player in Na, m + 1, in the unique SMPE in simple strategies all players

in Nb moderate while none of the players in Na do.

27 Example 4, strongly symmetric G with n = 7, illustrates this gap. For n = 7, n
n+1 = 0.875 and

δ̄(n) ≈ 0.924. When δ = 0.5, eight profiles of strategic bliss points exist, each supporting SMPE by
Proposition 5. When δ = 0.95, two profiles of strategic bliss points exist, each supporting SMPE by
Proposition 7.
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5.1 Comparative Statics and Policy Dynamics

Given the SMPE characterization from Proposition 5 the comparative statics of change

in the model parameters are almost immediate. To state the next proposition denote by

p(x|σ) the policy adopted in the period starting with the status-quo x when the profile of

proposal strategies is σ. p(x|σ) is random variable with realizations fully determined by

the identity of the proposing player.

Proposition 9 (Comparative statics with pairwise moderation). Assume G induces pair-

wise moderation. Then, for any pair of profiles of strategic bliss points x̂ and x̂′ produced

by pairwise path through Algorithm 1 and the induced (SMPE) σ and σ′ and ∀x ∈ X,

E[d(p(x|σ))] = E[d(p(x|σ′))]. Moreover, if conditions G1 and G2 hold strictly, marginal

impact of (symmetry of G preserving)

1. increase in δ,

2. increase in ri compensated by decrease in rm,

3. decrease in d(xi),

on E[d(p(x|σ))] is non-positive.

Proof. See appendix A1

Proposition 9 implies that the average distance of p(x|σ) from the bliss point of the

median player is independent of the specific equilibrium from Proposition 5 considered.

In addition, the proposition shows that a marginal increase in δ or ri and a marginal

decrease in d(xi) brings the policy proposed in any such equilibrium closer to the bliss point

of the median player. The key driving force behind the result is the stronger incentive

of all the players to moderate and propose policies closer to xm. This manifests in the

strategic bliss points moving (weakly) closer to xm and is easily seen from the fact that

d(x̂i) = d(xi)(1−2δr) where r ∈ [0, 1
2
) is the probability that Algorithm 1 used to compute

x̂i.
28

To describe the dynamics of the policies, denote by p(x|σ) = {p0, p1, . . .} the path

of policies generated by play according to SMPE σ starting with status-quo x, which

we denote by p−1. Depending on whether we view p(x|σ) as generated by deterministic

sequence of proposers or not, it is a sequence of numbers or of random variables.

28 Proposition 9 requires conditions G1 and G2 to hold strictly in order to ensure that marginal change
of the model parameters preserves pairwise moderation inducing G.
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Proposition 10 (Policy dynamics with pairwise moderation). Assume G induces pairwise

moderation. Then, for any profile of strategic bliss points x̂ produced by pairwise path

through Algorithm 1 and induced (SMPE) σ, for ∀x ∈ X and ∀t ∈ {0, 1, . . . , }, viewing

p(x|σ) = {p0, p1, . . .} as deterministic

1. d(pt) ≤ d(pt−1),

2. either d(pt) = d(x̂i) for some i ∈ N or d(pt) = d(pt−1),

and viewing p(x|σ) = {p0, p1, . . .} as sequence of random variables

3. P[d(pt) > 0] = (1− rm)t+1 if x 6= xm,

4. P[d(pt) = d(pt−1)] is non-decreasing in t,

5. P[pt > xm|pt−1 6= xm] = P[pt < xm|pt−1 6= xm] = ra.

Proof. See appendix A1

Thus, Proposition 10 says that over time adopted policies move closer to the bliss point

of the median player xm. In every period, pt is either equal to the strategic bliss point of

some player, or its distance from xm equals the distance of the status-quo policy from xm.

For pt to stay away from xm only non-median players have to be proposing in all periods

up to t, which happens with probability (1 − rm)t+1. The expected number of periods it

takes for pt to reach xm starting from x 6= xm is
∑∞

t=1 t · (1− rm)t−1rm = 1
rm

. That is, the

policies in the model converge to xm, but the expected length of the convergence phase

can be arbitrarily long.

Part 4 of the proposition says that convergence of pt slows down over time. With

the status-quo policy approaching xm, an increasing number of players is constrained by

the acceptance of the median player, they cannot propose their strategic bliss point and

propose, in period t, db(pt−1) or da(pt−1) instead. Slower convergence, however, does not

mean pt does not vary in time. In fact, as long as the status-quo policy differs from xm,

pt is as likely to be above xm as it is likely to be below. These fluctuations around xm are

result of players in Na replacing players in Nb, or vice versa, in the proposer role.

6 Equilibrium Existence in Three-player Games

The goal of this section is to study in more detail equilibria in games with three players.

We construct an SMPE for any G with n = 3 and arbitrary r and x. The construction
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relies heavily on the simple proposal strategies with strategic bliss points from Algorithm

1, possibly with a slight adjustment. Throughout the section, let us, if d(x1) 6= d(x3),

define e ∈ {1, 3} to be the more extreme player and −e = {1, 3} \ {e} to be the less

extreme player, such that d(xe) > d(x−e).

Definition 9 (Adjusted simple proposal strategies). The adjusted simple pure stationary

Markov proposal strategy of i ∈ N is

pai (x|x̂i, ~x) =

{
pi(x|x̂i) if x ∈ [db(~x), da(~x)]

pi(x|xi) if x /∈ [db(~x), da(~x)]

where x̂i is the strategic bliss point of i and ~x is called the point of adjustment. Adjusted

simple strategy of i ∈ N is denoted by ~σi = (x̂i, ~x).

Figure 2: Adjusted simple strategies

pai (x|x̂i, ~x)

xdb(xi) xm xix̂idb(x̂i) ~xdb(~x)

xm

xi pai (x|x̂i, ~x)

Figure 2 illustrates the adjusted simple proposal strategies from Definition 9. These

strategies resemble the unadjusted ones except at ~x, i switches from proposing policy x̂i

to proposing policy da(x).29 The adjustment is necessary for the SMPE construction in

the case when the strategic bliss point from Algorithm 1 of e satisfies d(x̂e) < d(xe). This

implies that x̂−e = x−e and is due to the fact that even though e is the more extreme

player in terms of the distance of her bliss point from xm, the recognition probability of

−e is large enough for e to have an incentive to moderate to a larger extent.

This in turn implies Se 6= ∅ as d(x̂e) < d(x−e) < d(xe). Thus, moving x away from xm,

the first player to switch to the constant part of her strategy is e, d(x̂e) far from xm, and

29 The figure is drawn for i ∈ Na. If i ∈ Nb the switch is to proposing policy db(x).
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the second player to switch is −e, d(x−e) far from xm. At this point the continuation value

functions of all the players become constant and the dynamic utilities inherit the shape

of the stage utilities. Moving x further away from xm toward xe, Ue increases, implying

failure of condition S, and might reach xa such that Ue(x̂e|σ′) = Ue(xa|σ′) where σ′ is

induced by x̂ = {x̂e, x̂2, x̂−e}. Any further increase in Ue(x|σ′) then implies that σ′ cannot

constitute an SMPE due to the failure of condition N.

However, if we adjust the simple strategy of e, x̂e, and allow her to switch, at xa, from

proposing x̂e to proposing da(xa) if e ∈ Na or to db(xa) if e ∈ Nb, the resulting ~σe = (x̂e, xa)

will be the best response to the proposal strategies of the other players. That the profile

of strategies σ′′ = (~σe, x̂2, x̂−e) generated by replacing strategy of e in σ′ is an SMPE

is related to a longer argument left for proofs of the propositions below. Heuristically,

the jump in the policy e proposes further away from xm induces downward jumps in the

dynamic utilities of m and −e. For m, this has no impact on either her optimal proposal

strategy or on the A generated by her voting strategy. For −e, for status-quo xa she is

on the constant part of her strategy proposing x̂−e = x−e as d(x−e) < d(xa) < d(xe).

The downward jump in U−e then only reinforces the optimality of x̂−e. Notice also that

because xa is defined by Ue(x̂e|σ′) = Ue(xa|σ′), it is intuitive that σ′′ will give rise to a

continuous Ue, despite the discontinuity in the proposal strategy of e. What remains is to

specify the exact location of the point of adjustment xa.

Definition 10 (Point of adjustment). For G with n = 3 and d(x1) 6= d(x3) define point

of adjustment xa as

xa =


xe + (m− e)

√
4δr−ed(xe)2 − δr−e

1−δr−e (d(xe) + d(x−e))2 if δr−e <
1
2

xe + (m− e)
√

1
1−δr−ed(xe)2 − δr−e

1−δr−e (d(xe) + d(x−e))2 if δr−e ≥ 1
2

and note xa ∈ C, xa = xe and d(xa) < d(xe) as d(xe) < d(x−e)Te, d(xe) = d(x−e)Te and

d(xe) > d(x−e)Te respectively, where

Te =


1

2
√

1−δr−e−1
if δr−e <

1
2

√
δr−e

1−
√
δr−e

if δr−e ≥ 1
2
.

We explained above that the need for the adjusted simple proposal strategies arises in

cases when −e is very likely to propose, which creates strong incentives for e to moderate.

When e is the player who is more likely to propose, then Algorithm 1 produces x̂e = xe
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as −e has stronger incentive to moderate relative to e, due to both d(xe) > d(x−e) and

re > r−e. In this case x̂ from Algorithm 1 induces SMPE σ without need for further

adjustments. A similar lack of complications arises when d(x1) = d(x3) as the incentives

to moderate are determined purely by r1 and r3. The following definition formalizes when

the need for adjustment arises and allows us to state the two propositions below.

Definition 11 (Condition E). G with n = 3 satisfies condition E if and only if, whenever

Ae holds, then Be holds, where

Ae : d(x1) 6= d(x3) ∧ d(xe)(1− 2δr−e) ≤ d(x−e)(1− 2δre)

Be : d(xe) ≤ d(x−e)Te.
(E)

Proposition 11. Assume condition E holds in G with n = 3. Then

1. an SMPE in simple proposal strategies exists with x̂ produced by Algorithm 1;

2. an SMPE in adjusted simple proposal strategies exists if and only if, in condition

E, Ae holds and Be holds with equality; it is characterized by x̂ from Algorithm 1

(dropping e in step 1, if given an option) and ~σe = (x̂e, xe);

3. if and only if d(x1) = d(x3) or d(xe)(1 − 2δr−e) ≥ d(x−e)(1 − 2δre), x̂ produced by

Algorithm 1 (dropping −e in step 1, if given an option) induces U1 that is single

peaked on {x ∈ X|x ≤ xm} (on X if δr1 ≤ 1
2
) and U3 that is single peaked on

{x ∈ X|x ≥ xm} (on X if δr3 ≤ 1
2
).

Proof. See appendix A1

Proposition 12. Assume condition E fails in G with n = 3. Then

1. an SMPE in adjusted simple proposal strategies exists with x̂ from Algorithm 1 (drop-

ping e in step 1, if given an option) and ~σe = (x̂e, xa);

2. an SMPE in simple proposal strategies exists if and only if d(x1)(1−2δr3) = d(x3)(1−
2δr1); it is characterized by x̂ from Algorithm 1 (dropping −e in step 1).

Proof. See appendix A1

Parts 1 of the two propositions jointly imply the existence of an SMPE for any three-

player G. It is constructed using either the simple strategies or their adjusted version if

necessary.

Corollary 3. An SMPE exists in G with n = 3.
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We know from Proposition 2 that whenever an SMPE in simple strategies exists, Al-

gorithm 1 produces the profile of strategic bliss points that supports it. For G with n = 3,

Algorithm 1 produces two distinct profiles of strategic bliss points if and only if δ ∈ (0, 1)

and d(x1)(1−2δr3) = d(x3)(1−2δr1). If in addition condition E holds, two SMPE exist in

simple strategies. Failure of any of these three conditions implies that an SMPE in simple

strategies is either unique or fails to exist. Because d(x1)(1− 2δr3) = d(x3)(1− 2δr1) fails

upon perturbation of x or r, the multiplicity of SMPE in simple strategies is non-generic.

Corollary 4. If it exists, an SMPE in simple proposal strategies is essentially unique in

G with n = 3.

7 Equilibrium Construction with X ⊆ Rn′

This section extends the model to policy spaces of multiple dimensions. The policy space

is X ⊆ Rn′ . Any element of X, a policy ~p, a status-quo ~x or an i’s bliss point ~xi, is a

vector in Rn′ with components denoted by superscripts, such that ~x = (x1, . . . , xn
′
) ∈ X.

When X ( Rn′ , then we require X to be the Cartesian product X =×n′

j=1
Xj where each

Xj ⊆ R is a closed convex interval that is symmetric around xjm (m defined below) and

includes both mini∈N {xji} and maxi∈N {xji}. The stage utility of i ∈ N from policy ~p is

ui(~p ) = −
∑n′

j=1(p
j−xji )2 where xji is the most preferred policy of i on dimension j. Using

|| · || to denote Euclidean norm (distance), ui(~p ) = −||~p− ~xi||2.30

Denote by m the player with bliss point ~xm in the majority core. In order for the

majority core to exist we assume that the Plott (1967) condition holds. As is well known,

for an odd number of players this condition is both sufficient and necessary (Austen-Smith

and Banks, 2000) for the core existence and implies that it consists of a single alternative,

~xm. The Plott (1967) condition states that for any i ∈ N \ {m}, ir ∈ N \ {m, i} exists

such that α~xi + (1 − α)~xir = ~xm for some α ∈ (0, 1). That is, for any player, another

player exists such that the line connecting their bliss points passes through ~xm. This

special arrangement of bliss points is also called radial symmetry and that is why, for

any i ∈ N \ {m}, we denote by ir ∈ N \ {m, i} the player with a bliss point on the

line connecting ~xi and ~xm. For simplicity, we assume that exactly three players, i, m

and ir, lie on each such line and, without loss of generality, we set ~xm as an origin of X

30 The rest of the model extends naturally and we do not (re)define the proposal strategies, value
functions, dynamic utilities, social acceptance correspondence and SMPE due to space considerations.
We continue to use x = {~x1, . . . , ~xn} for the profile of bliss points and x̂ for the profile of strategic bliss
points as well as G = 〈n,x, r, δ,X〉.
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such that ~xm = (0, . . . , 0) = 0.31 For any i ∈ N \ {m} and j ∈ N \ {m}, we denote by

cos(i, j) =
~x′i~xj

||~xi||·||~xj || angle between ~xi and ~xj (on the plane determined by ~xi, ~xj and ~xm).

Definition 12 (Orthogonal strongly symmetric G). G is orthogonal strongly symmetric

if and only if ri = 1
n

for ∀i ∈ N , ||~xi|| = b > 0 for ∀i ∈ N \ {m} and cos(i, j) = 0 for

∀i ∈ N \ {m} and ∀j ∈ N \ {i, ir,m}.

Definition 13 (Equiangular G on circle). G is equiangular on a circle if and only if ri = 1
n

for ∀i ∈ N , ||~xi|| = b > 0 for ∀i ∈ N \ {m}, ~x1 = (b, 0) and cos(i, 1) = cos ((i− 1)α) for

∀i ∈ N \ {n} where α = 2π
n−1 .

7.1 Simple Strategies, Strategic Bliss Points

The dynamic median voter theorem from Proposition 1 extends to multi-dimensional policy

space and again implies that the social acceptance sets A are determined by the median’s

expected utility.

Proposition 13 (Dynamic median voter theorem for X ⊆ Rn′).

For any profile of pure stationary Markov strategies σ̂, with implied voting such that, for

∀i ∈ N , i ∈ N votes for proposed ~p ∈ X against the status-quo ~x ∈ X if and only if

Ui(~p |σ̂) ≥ Ui(~x |σ̂), ~p is accepted if and only if Um(~p |σ̂) ≥ Um(~x |σ̂).

Proof. See appendix A1

Definition 14 (Simple proposal strategies). The simple pure stationary Markov proposal

strategy of i ∈ N is

~pi(~x |k̂i) = ~xi ·min

{
k̂i,
||~x||
||~xi||

}
where k̂i~xi is the strategic bliss point of i with k̂i ≥ 0.

With a strategic bliss point of i, k̂i~xi, fully determined by k̂i, we also call k̂i a strategic

bliss point since no confusion arises. The profile of strategic bliss points then refers to

x̂ = {k̂1~x1, . . . , k̂n~xn} or k̂ = {k̂1, . . . , k̂n}. Given x̂ or k̂ the profile of simple proposal

(and implied voting) strategies is σ = (~p1, . . . , ~pn). Since ~pi is fully determined by k̂i~xi or

k̂i, we also call k̂i~xi or k̂i the proposal strategy of i and x̂ or k̂ the profile of strategies.

The simple strategies in Rn′ are analogous to the simple strategies in R. For any

status-quo ~x close to the bliss point of the median player, ~xm = 0, player i proposes a

31 The model is shift and rotation invariant, hence the normalization ~xm = 0. By the same argument,
setting ~x1 to lie on the coordinate axis of R2 in the examples below entails no loss of generality.

34



policy on the ray starting at ~xm and passing through ~xi, i-ray for short. The distance

between the proposed policy and ~xm is equal to the distance between the status-quo ~x and

~xm. For any status-quo ~x far away from ~xm, player i still proposes a policy on the i-ray,

but at distance k̂i||~xi|| from ~xm. From Definition 14, in this case k̂i||~xi|| ≤ ||~x||. That is,

player i moderates and proposes k̂i~xi instead of proposing ~xi
||~x||
||~xi|| , which would be a policy

at distance ||~x|| from ~xm. The strategic bliss point k̂i is then relative to ||~xi|| distance at

which i switches from proposing ~xi
||~x||
||~xi|| to proposing k̂i~xi, the distance of status-quo at

which i starts moderating.

Given k̂ and induced σ we define several objects required in the analysis below. By

ND(σ) = {0, k̂1||~x1||, . . . , k̂n||~xn||} we denote the set of distances such that, for any x ∈
ND(σ), there exists at least one ~pi that is not differentiable, along the i-ray, with respect

to x at x.32 D(σ) = R≥0 \ND(σ) denotes the complement of ND(σ), the set of distances

such that all the strategies are differentiable. For i ∈ N \ {m} the set of elements in

ND(σ) rescaled by ||~xi|| is NDi(σ) = {x/||~xi|| |x ∈ ND(σ)}.
Denote by ~p ′i(x|k̂i) = ∂

∂x

[
~pi(x

~xi
||~xi|| |k̂i)

]
the derivative of ~pi along the i-ray and note

that ~p ′i(x|k̂i) 6= 0 for x ∈ (0, k̂i||~xi||) and ~p ′i(x|k̂i) = 0 for x > k̂i||~xi||. When i = m,

there is no i-ray and, as a convention, we choose an arbitrary i-ray with i ∈ N \ {m},
which implies ~p ′m(x|k̂m) = 0.33 For ∀x ∈ D(σ), define C(x|σ) = {i ∈ N |~p ′i(x|k̂i) = 0}
and NC(x|σ) = {i ∈ N |~p ′i(x|k̂i) 6= 0}. C(x|σ) and NC(x|σ) are sets of players who, at

distance x from the origin, are on the constant and the non-constant part of ~pi (judging

by its derivative) respectively. Naturally, C(x|σ) ∪ NC(x|σ) = N for ∀x ∈ D(σ). Despite

C being a correspondence, define its one-sided limits C(x+|σ) = {i ∈ N |~p ′i(x+|k̂i) = 0}, for

∀x ∈ ND(σ), and C(x−|σ) = {i ∈ N |~p ′i(x−|k̂i) = 0}, for ∀x ∈ ND(σ) \ {0}. One-sided

limits of NC(x|σ), NC(x−|σ) and NC(x+|σ) are defined similarly.34 For i ∈ N \ {m},
define NCi(x|σ) = NC(x||~xi|| |σ) for any x ≥ 0 such that x||~xi|| ∈ D(σ). One-sided limits

of NCi(x|σ), NCi(x−|σ) at any x > 0 and NCi(x+|σ) at any x ≥ 0, are defined using

one-sided limits of NC.35

32 This is not entirely precise. If k̂ = 0 all ~pi are constant and hence differentiable on X. ND(σ) should
be understood as the set of distances at which some ~pi might not be differentiable along the i-ray. We
are concerned with taking derivatives when these do not exist, so this is a mere imprecision in the label
for ND(σ).

33 To avoid unnecessary repetition and because there is only a minimal chance of confusion, we use a
similar convention for any expression involving expansion or derivative of Ui or Vi along the i-ray when
i = m. It is taken to mean expansion or derivativation along an arbitrary i-ray with i ∈ N \ {m}, i.e.,
Um(k~xi) or Vm(k~xi) as k varies or derivativation with respect to it.

34 NC and C are both piecewise ‘constant’ on intervals determined by ND(σ) and hence, for ∀x ∈ D(σ),
C(x|σ) = C(x+|σ) = C(x−|σ) and NC(x|σ) = NC(x+|σ) = NC(x−|σ).

35 The difference between NC and NCi is their domain. The former has distance as its domain, the
latter has distance relative to ||~xi|| as its domain.
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For ∀x ∈ D(σ) define rnc(x|σ) =
∑

i∈NC(x|σ) ri to be the sum of the recognition proba-

bilities of players on the non-constant part of their strategy, at distance x from the origin.

rnc(x|σ) is undefined at x ∈ ND(σ) but possesses one-sided limits at these points (defined

using one-sided limits of NC).36

Finally, for ∀i ∈ N \ {m} define the (possibly empty) sets

Si(σ) = NDi(σ) ∩ (k̂i, 1)

Li(σ) = {k ≥ 0| ∂
∂k

[Ui(k~xi|σ)] = 0 ∧ k||~xi|| ∈ D(σ)}

Ni(σ) = ((NDi(σ) ∪ Li(σ)) ∩ (k̂i, 1)) ∪ {k̂i, 1}

(7)

with elements of Ni(σ) ordered in increasing order. Si(σ) is the set of points in the (k̂i, 1)

interval at which ~pj is not differentiable, along j-ray, for some j ∈ N . Ni(σ) is a similar

set of points adding points of local maxima of Ui(σ) along the i-ray, Li(σ), and {k̂i, 1}.
We are well aware that all ND, NDi, D, C, NC, NCi, rnc, Si, Li and Ni are defined

relative to k̂ and hence relative to σ. We suppress the dependence of these objects on σ

when confusion cannot arise.

Lemma 8 (Properties of Vi and Ui induced by k̂). For any k̂ with k̂i ≥ 0 for ∀i ∈ N \{m}
and k̂m = 0 and induced profile of simple strategies σ, for ∀i ∈ N ,

1. Vi(~x |σ) = Vi(~y |σ) for ∀~x ∈ X and ∀~y ∈ X with ||~x|| = ||~y||;

2. Ui(k~xi |σ) > Ui(~y |σ), if i ∈ N\{m}, for any k ≥ 0 and ~y ∈ X such that k||~xi|| = ||~y||
but k~xi 6= ~y;

3. Ui is continuous on X;

4. ∂2

∂2k
[Ui(k~xi |σ)] < 0 for ∀k ≥ 0 such that k||~xi|| ∈ D(σ);

5. Um(~x |σ) > Um(~y |σ) for ∀~x ∈ X, ∀~y ∈ X such that ||~x|| < ||~y||;

6. A(~x |σ) = {~p ∈ X| ||~p|| ≤ ||~x||} for ∀~x ∈ X.

Proof. See appendix A1

Lemma 8 is the close analog of Lemma 2. Its most important implication is the shape

of the social acceptance correspondence. For any status-quo ~x ∈ X, the set of accepted

policies, when proposed, is the set of policies weakly closer to ~xm relative to ~x. As a result,

36 For any profile of strategic bliss points k̂ and σ it induces, because players are switching from the non-
constant to the constant part of their strategy with increasing x ∈ R≥0, for any x ∈ D(σ) and y ∈ D(σ)
such that x ≤ y, NC(y|σ) ⊆ NC(x|σ) and hence rnc(y|σ) ≤ rnc(x|σ).
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any proposal generated by a simple strategy based on k̂ that satisfies the requirement of

the lemma belongs to the social acceptance set induced by k̂. Furthermore, part 2 of the

lemma implies that any dynamic utility maximizing policy, for player i, must lie on the

i-ray. This is a consequence of the value functions being constant on the hypersphere of

the given radius and the stage utility, on the same hypersphere, having the maximum on

the i-ray. The final element needed in the construction is to determine the strategic bliss

points. This is what Algorithm 2 does.

Algorithm 2 (Strategic bliss points with X ⊆ Rn′).

step 0 Set k̂m = 0 and P1 = N \ {m}

step t For i ∈ Pt compute

k̂i,t = 1− δ
∑
j∈Pt

rj[1− cos(i, j)]

Define Rt = {i ∈ Pt|k̂i,t ≤ 0}
If Rt = ∅, select one j ∈ arg mini∈Pt k̂i,t||~xi||, set k̂j = k̂j,t

If Rt 6= ∅, select one j ∈ Rt, set k̂j = 0

Set Pt+1 = Pt \ {j} and if Pt+1 6= ∅, proceed to step t+ 1

The way in which Algorithm 2 derives the strategic bliss points is closely related to

Algorithm 1. With a one-dimensional policy space the opponents of player i are players

with bliss points on the opposite side of the median’s bliss point. From Algorithm 1, the

strength of player i’s incentive to moderate, driven by the presence of her opponents, is

2δr where r is the probability of recognition of the opponents. With a multi-dimensional

policy space, players other than player i are her opponents to a certain degree, which is

captured by the term [1−cos(i, j)]. For ir, the strength of i’s incentive to moderate is 2δrir

as [1−cos(i, j)] = [1−cosπ] = 2. Players with bliss points orthogonally located relative to

~xi add half as much to the incentive to moderate as [1−cos(i, j)] = [1−cos π
2
] = 1. Finally,

players on the same i-ray, namely i herself, add nothing to the incentive to moderate as

[1− cos(i, j)] = [1− cos 0] = 0.

Example 9 (Simplest example in R2). Consider G with n = 5, ri = 1
n

for ∀i ∈ N , δ = 0.9

and the following bliss points

player 1 2 3 4 5

x1i 2 -2 0 0 0

x2i 0 0 2 -2 0
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In step 1 the algorithm computes k̂i,1 = 0.28 for i ∈ {1, . . . , 4}. Dropping player 1, in

step 2 the algorithm computes k̂i,2 = 0.46 for i ∈ {3, 4}. Dropping player 3, in step 3 the

algorithm computes k̂i,3 = 0.82 for i ∈ {2, 4}. Finally, dropping player 2, in step 4 the

algorithm computes k̂i,4 = 1 for i ∈ {4}. The selection regarding which players to drop

produces

player 1 2 3 4 5

k̂i 0.28 0.82 0.46 1 0

The algorithm allowed for four players to be dropped in step 1 and two in steps 2 and 3.

Since the number of alternatives in steps 2 and 3 does not depend on the selection in the

earlier steps, there are 4 · 2 · 2 = 16 different profiles of strategic bliss points the algorithm

can produce.

7.2 Necessary and Sufficient Conditions

Any profile of strategic bliss points k̂ from Algorithm 2 induces profile of strategies σ. To

check that σ constitutes an SMPE we define the following two conditions analogous to

conditions S and N from the one-dimensional model.

Definition 15 (Condition S′, sufficient). A profile of strategic bliss points k̂ from Algo-

rithm 2 that induces σ satisfies condition S′ if and only if, for ∀i ∈ N\{m} and ∀x ∈ Si(σ),

1− x− δ
∑

j∈NCi(x+|σ)

rj[1− cos(i, j)] ≤ 0. (S′)

Definition 16 (Condition N′, necessary and sufficient). A profile of strategic bliss points

k̂ from Algorithm 2 that induces σ satisfies condition N′ if and only if, for ∀i ∈ N \ {m}
and denoting elements of Ni(σ) by {z0, z1, . . .},

∑J

j=1

[
Ti(x|σ)

]z+j−1

z−j

≥ 0 for ∀J ∈ {1, . . . , |Ni(σ)| − 1} (N′)

where

Ti(x|σ) = − 2||~xi||2

1− δ
∑

j∈NCi(x|σ) rj

[
x2

2
− ci(x|σ)x

]
ci(x|σ) = 1− δ

∑
j∈NCi(x|σ)

rj[1− cos(i, j)].

Proposition 14 (SMPE under S′ and N′ conditions). A profile of strategic bliss points k̂

from Algorithm 2 induces SMPE σ
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1. if k̂ satisfies condition S′;

2. if and only if k̂ satisfies condition N′.

Proof. See appendix A1

The reason both conditions S′ and N′ guarantee that the profile of strategies σ induced

by k̂ constitutes an SMPE is analogous to the one-dimensional model. By Lemma 8 it is

sufficient to focus on the shape of the dynamic utility of player i along the i-ray, that is on

Ui(k~xi |σ) as k ≥ 0 varies. Condition S′ then checks that at any point in (k̂i, 1) where Ui is

not differentiable, the right derivative of Ui is non-positive. By piecewise strict concavity

of Ui this implies that Ui is decreasing as a function of k on (k̂i, 1). The best response of

player i is then to propose k̂i~xi. Condition S′ focuses only on the (k̂i, 1) interval due to Ui

increasing on [0, k̂i] and decreasing on [1,+∞). The former is by construction and follows

from the way Algorithm 2 determines k̂i while the latter holds for any k̂.

Condition S′ is stronger than necessary. When it fails, σ possibly still constitutes an

SMPE when condition N′ holds. The latter condition verifies that Ui(k̂i~xi) ≥ Ui(k~xi) for

∀k ≥ k̂i. It only looks at a finite set of points using the fact that Ui is piecewise quadratic

and Ui(k~xi)− Ui(l~xi) =
[∫

∂
∂z
Ui(z~xi)dz

]k
l
.

Both conditions guarantee existence of an SMPE and only need to be checked at a

finite set of points. Their disadvantage is that they apply to the strategic bliss points from

Algorithm 2. Relating S′ and N′ to the parameters defining G is non-trivial due to compli-

cated mapping from n, x, r and δ to x̂. That is why in the next two subsections we look

at orthogonal strongly symmetric and equiangular games. Putting enough structure on

the parameters defining G will allow us to relate (mainly) condition S to these parameters.

Before proceeding, we provide several examples. Example 9 (continued) below illus-

trates that the verification of the conditions can be straightforward. Verification of the

conditions in the subsequent Example 10 is more involved, but still possible due to their

focus on a finite set of points. Finally, Examples 11 and 12 show that verification of the

two conditions is possible even in partially parameterized G.

Example 9 (continued). With x = {(2, 0), (−2, 0), (0, 2), (0,−2), (0, 0)} and k̂ = {0.28, 0.82, 0.46, 1, 0},
ND = {0, 0.56, 0.92, 1.64, 2} and for i ∈ N\{m} NDi = {0, 0.28, 0.46, 0.82, 1}. The subset
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of players on the non-constant part of their strategy is

NC(x) =



{1, 2, 3, 4} for x ∈ (0, 0.56)

{2, 3, 4} for x ∈ (0.56, 0.92)

{2, 4} for x ∈ (0.92, 1.64)

{4} for x ∈ (1.64, 2)

∅ for x ∈ (2,∞)

which can be used to derive NCi for i ∈ N \ {m} from NCi(x) = NC(2x). To verify

condition S′, Si = ∅ for i ∈ {2, 4}, S1 = {0.46, 0.82} and S3 = {0.82}. Using NCi for

i ∈ {1, 3}, NCi(x+) = {2, 4} for x = 0.46 and NCi(x+) = {4} for x = 0.82. From here it

is matter of simple algebra to verify that condition S′ holds. The results we prove in the

following subsection also imply that any of the 16 different profiles of strategic bliss points

Algorithm 2 can produce for this example satisfy condition S′ and also that we could have

used any δ = (0, 1) in this example without changing its results. This follows from the fact

that the current G is orthogonal strongly symmetric.

Example 10 (Duggan and Kalandrakis (2011) parametrization). Consider G with n = 9,

ri = 1
n

for ∀i ∈ N , δ = 0.7 and bliss points

player 1 2 3 4 5 6 7 8 9

x1i -0.8 0.3 -0.2 0.9 0.1 -0.15 0.3 -0.9 0

x2i 0 0 0.2 -0.9 0.6 -0.9 0.2 -0.6 0

Algorithm 2 produces a unique set of bliss points (numbers rounded)

player 1 2 3 4 5 6 7 8 9

k̂i 0.79 0.51 0.38 1 0.50 0.94 0.48 0.91 0

for which conditions S′ and N′ hold.

Example 11 (Non-orthogonal players in R2). Consider G with n = 5, ri = 1
n

for ∀i ∈ N ,

δ ∈ (0, 1) and, for α ∈ (0, π
2
), the following bliss points

player 1 2 3 4 5

x1i 1 -1 cosα − cosα 0

x2i 0 0 sinα − sinα 0
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Algorithm 2 in step 1 computes k̂i,1 = 1 − δ 4
5

for i ∈ N \ {m}. Dropping player 1 gives

k̂1 = 1 − δ 4
5
. In step 2 the algorithm drops player 3 with k̂3 = 1 − δ

5
(3 − cos (π − α)). In

step 3 the algorithm computes k̂2,3 = k̂4,3 = 1− δ
5
(1−cosα) and dropping player 4 produces

k̂4 = 1− δ
5
(1− cosα) and k̂2 = 1.

With these strategic bliss points Si = ∅ for i ∈ {2, 4}, S1 = {k̂3, k̂4} and S3 = {k̂4}.
Computing NC is straightforward using the fact that the algorithm dropped players in

the order 1, 3, 4 and 2. Hence, for i ∈ N \ {m}, NCi(x+) = {2, 4} for x = k̂3 and

NCi(x+) = {2} for x = k̂4. From here, it is matter of simple algebra to confirm that

condition S′ holds for any δ ∈ (0, 1) and α ∈ (0, π
2
).

Had we dropped player 2 in step 3 of the algorithm, we would have S1 = {k̂3, k̂2}
and S3 = {k̂2} with k̂2 = 1 − δ

5
(1 − cosα), that is with the same value as before, and

NCi(x+) = {4} for x = k̂2. Condition S′ would still hold. Had we dropped any other

player than player 1 in step 1 of the algorithm, we would face the same duplicity but

condition S′ would still hold.

Example 12 (Players at varying distances in R2). Consider G with n = 5, ri = 1
n

for

∀i ∈ N , bliss points

player 1 2 3 4 5

x1i dx −dx 0 0 0

x2i 0 0 dy −dy 0

where dx
dy

= dr > 1 and δ ≤ 5(dr−1)
3dr−2 . Note that the assumption on δ is not binding if dr ≥ 3

2
.

Algorithm 2 in step 1 computes, k̂i,1 = 1−δ 4
5

for i ∈ N \{m} and offers the option to drop

players 3 and 4 due to k̂i,1dy < k̂j,1dx for any i ∈ {3, 4} and j ∈ {1, 2}. Dropping player

4 produces k̂4 = 1− δ 4
5
. In step 2 the algorithm computes k̂3,2 = 1− δ 2

5
and k̂i,2 = 1− δ 3

5

for i ∈ {1, 2}, drops player 3 due to k̂3,2dy ≤ k̂i,2dx for i ∈ {1, 2} by assumption on δ,

and produces k̂3 = 1 − δ 2
5
. Steps 3 and 4 then produce, dropping player 1 in the former,

k̂1 = 1− δ 2
5

and k̂2 = 1.

With these strategic bliss points Si = ∅ for i ∈ {1, 2}, S4 = {k̂3, k̂1dr} and S3 = {k̂1dr}
(if k̂1dr ≥ 1, then k̂1dr does not belong to S3 and S4). Computing NCi for i ∈ {3, 4} gives

NCi(x+) = {1, 2} for x = k̂3 and NCi(x+) = {2} for x = k̂1dr. From here, it is matter

of simple algebra to confirm that condition S′ holds. A similar argument shows that it

holds for any k̂ produced by alternative selection of players to drop in steps 1 and 3 of the

algorithm.
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7.3 Orthogonal Strongly Symmetric Games

Recall that G is orthogonal strongly symmetric if the recognition probabilities of all the

players are equal, for every player i ∈ N \ {m} exactly one player ir exists with bliss point

on the opposite side of ~xm = 0 relative to ~xi and for every other player j ∈ N \ {i, ir,m},
cos(i, j) = 0. This implies that policy space X in G with n players is X ⊆ Rn−1

2 . In

addition, ri = 1
n

for ∀i ∈ N and ||~xi|| = b > 0 for ∀i ∈ N \ {m}. G in Example 9 satisfies

this definition while G in Examples 10, 11 and 12 do not.

Proposition 15 (SMPE in orthogonal strongly symmetric G). Assume G is orthogonal

strongly symmetric. Then

1. if δ ∈ (0, 1), 2(n−1)/2 (n−1
2

!
)2

distinct profiles of strategic bliss points k̂ produced by

Algorithm 2 exist, if δ = 0, k̂ = 1;

2. σ induced by any of these profiles of strategic bliss points constitutes an SMPE;

3. σ induced by any of these profiles of strategic bliss points satisfies condition S′ and,

for i ∈ N , Ui(k~xi |σ) is single peaked (in k) on R≥0.

Proof. See appendix A1

7.4 Equiangular Games on a Circle

We have defined equiangular G to be in R2 with the bliss points of all the players at the

same distance from ~xm and arranged such that the angle between the bliss points of any

adjacent players is α = 2π
n−1 . The players are indexed such that ~x1 = (b, 0) and ~xi are

arranged, with increasing i, counter-clockwise on a circle of radius b, which implies m = n.

Proposition 16 (SMPE in equiangular G). Assume G is equiangular on a circle with

radius b > 0. Then

1. if δ ∈ (0, 1), 2(n−3)(n − 1) distinct profiles of strategic bliss points k̂ produced by

Algorithm 2 exist, if δ = 0, k̂ = 1;

2. σ induced by any of these profiles of strategic bliss points constitutes an SMPE;

3. σ induced by any of these profiles of strategic bliss points satisfies condition S′ and,

for i ∈ N , Ui(k~xi |σ) is single peaked (in k) on R≥0;

4. limn→∞ k̂i = 1 − δ + δ
[
γ−sin γ

2π

]
for i Algorithm 2 drops after γ

2π
fraction of players

has been already dropped.
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Proof. See appendix A1

The key insight that allows us to prove Proposition 16 is the special structure of the

strategic bliss points Algorithm 2 produces for any equiangular G. In step 1 the algorithm

offers an option to drop players {1, . . . , n − 1}. Dropping player 1, the algorithm in the

next step offers an option to drop players {2, n− 1}. Intuitively, dropping player 1 in step

1 means that the opponent of 1r moderates, weakening considerably the incentive of 1r

to do so. On the other hand, dropped player 1 is closely allied with players 2 and n − 1

for whom the incentive to moderate changes only slightly as a result of player 1 being

dropped. Dropping player n − 1, the players to drop in the following step are {2, n − 2}
and so on. In other words, if Pt is the set of players still in the algorithm in step t ≥ 2, the

set of players that can be dropped is {minPt,maxPt}. This puts just enough structure on

the resulting profile of strategic bliss points for us to prove that the induced σ constitutes

an SMPE.

Despite the fact that the algorithm can produce a large number of distinct profiles

of strategic bliss points, systematic selection of players to drop might generate easy to

describe k̂. Figure 3 shows two such k̂ in the limit as δ → 1 and n → ∞. Panel 3a

shows k̂ generated by systematically selecting minPt as the player to be dropped. Panel

3b then shows k̂ generated by alternatively selecting minPt and maxPt as the players to

be dropped.37

Figure 3: Strategic bliss points in equiangular G
limit as n→∞ and δ → 1

(a) Counter-clockwise dropping (b) Alternating dropping

37 In polar coordinates, panel 3a can be expressed as θ−sin θ
2π for θ ∈ [0, 2π] and the upper branch of

panel 3b as θ−sin θ cos θ
π for θ ∈ [0, π]. See proof of Proposition 16 in appendix A1 for details.
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8 Conclusion

This paper provided insights and techniques for studying equilibria in dynamic spatial

legislative bargaining. Our results show that the structure of equilibria in these models is

simple and intuitive, once we address the formal difficulties for which we have provided

a resolution. We hope that our results will foster further research into dynamic spatial

legislative bargaining, which we feel has unjustifiably been lagging behind the study of the

distributive dynamic models.

In order for the dynamic, spatial or distributive, legislative bargaining models to find

a stable place in political economics, they need to provide novel insights and further our

understanding of policy determination relative to their static precursors. In this paper, for

the most part we have failed to stress and comment on the behaviour of policies generated

by equilibrium play, focusing instead on the existence of equilibria and relying on reader’s

ingenuity. Common themes emerging from our analysis are the convergence to the policy

preferred by the median player, the convergence path alternation of policies around this

policy and asymmetric tendency for moderation towards this policy.

The first theme implies, seemingly in our opinion, that the study of the dynamic models

does not warrant the increased complexity of the analysis; in static models the median’s

optimal policy is typically the strong point of attraction. To dispute this claim, we have

shown that the convergence phase can be arbitrarily long. Alternation and moderation

along the convergence path, predictions about the evolution of policies, are then distinctive

to the dynamic models.

Moderation and asymmetric incentive to do so are likewise specific to the dynamic

models. These observations can, for example, explain why in the US the Democratic party

is sometimes referred to as ‘the party of the people’ while the Republican party bears ‘the

grand old party’ moniker. Taking the symmetric three-player dynamic bargaining model

studied in section 4, as the probability of recognition of the median player vanishes, we

approach a model with two parties proposing policies subject to approval by the median,

who is devoid of any proposal power. Re-interpreting the model as one with an electorate

and two parties, equilibrium in this model will have exactly one of the parties moderating.

If, in addition, the parties become arbitrarily patient, the moderating party will propose

policies that almost coincide with the most preferred policy of the electorate, despite the

parties being completely symmetric.

A wider use of dynamic bargaining models requires deeper formal understanding of

their properties and a large(r) set of existing results. In this respect our analysis raises

more questions than it answers. Our approach to equilibrium construction fails when the
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conditions N and N′ fail. The existence and properties of equilibria when the conditions

fail thus remain open questions. The fact that the adjusted simple strategies can be

used to establish equilibrium existence for three-player games strongly suggests that a

similar approach could prove fruitful even when the number of players is larger. We

have extensively investigated this possibility, but so far failed to prove the desired result.

Another open question we leave for further work is the closer link between the necessary

conditions for the existence of equilibrium in simple strategies and the parameters of a

game. We have provided this link for symmetric one-dimensional games and two highly

restricted classes of multi-dimensional games, clearly leaving scope for future work.

The equilibrium construction we provide is in pure proposal strategies, something we

view in a positive light. Nevertheless, more general models might require, in order for the

equilibria to exist, the use of mixed strategies. From Kalandrakis (2012) we know that

mixed strategy equilibria exist in three-player, using our terminology, strongly symmetric

games (the first adjective is most likely not needed for his result) and possess interesting

properties. Whether mixing can be used to establish the general existence result in a

dynamic spatial legislative bargaining model remains an open question.

Finally, our contribution relies heavily on the existence of a unique player who is deci-

sive for the acceptance of any policy, on the existence of median player. Quadratic utilities

in the one-dimensional setting and Euclidean utilities along with radial symmetry assump-

tion in the multi-dimensional setting ensure the median exists, raising the natural question

of the effect of its nonexistence, when, as an example, alternative utility functions are used

or the radial symmetry fails and the existence of the median is either not guaranteed or

is known to fail.
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A1 Proofs

A1.1 Proof of Proposition 1

The proposition is an implication of Banks and Duggan (2006b). We present full proof

in order to demonstrate dependence of the result on the quadratic utilities used. The key

fact we will use is that for any random variable z with mean µz and variance σ2
z and for

quadratic utility with bliss point xi, we have E[−(z−xi)2] = −[σ2
z + (µz−xi)2]. Note also

that ∂
∂xi

[−[σ2
z + (µz − xi)2]] = 2(µz − xi), which is linear in xi.

Now fix any profile of pure stationary Markov strategies σ̂. Consider two policies p0 and

p′0 generating stochastic sequence, via σ̂, of policies p = {p0, p1, . . .} and p′ = {p′0, p′1, . . .}
respectively. The utility of player i from voting either for p0 or p′0 is

Ui(p0|σ̂) = E

[
∞∑
t=0

−δt(pt − xi)2
]

Ui(p
′
0|σ̂) = E

[
∞∑
t=0

−δt(p′t − xi)2
]
. (A1)

Differentiating the difference in utility from the two policies with respect to xi gives

∂[Ui(p0|σ̂)− Ui(p′0|σ̂)]

∂xi
= E

[
2
∞∑
t=0

−δt(p′t − pt)

]
(A2)

which is independent of xi and hence Ui(p0|σ̂)− Ui(p′0|σ̂) is linear in xi.

Now assume Um(p0|σ̂) ≥ Um(p′0|σ̂). Then Ui(p0|σ̂) ≥ Ui(p
′
0|σ̂) either for ∀i ∈ Na or

∀i ∈ Nb and p0 is accepted. Conversely, if Um(p0|σ̂) < Um(p′0|σ̂), then Ui(p0|σ̂) < Ui(p
′
0|σ̂)

either for ∀i ∈ Na or ∀i ∈ Nb and p0 is rejected. This implies that p0 is accepted if and only

if Um(p0|σ̂) ≥ Um(p′0|σ̂), that is, when the median player (weakly) prefers p0 to p′0. �
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A1.2 Proof of Lemma 1

By Proposition 1, for any profile of strategies σ̂, proposal p ∈ X is accepted under status-

quo x ∈ X if and only if m votes for p. Because m can enforce xm as an outcome in any

future period by rejecting any proposal p 6= xm when status-quo is xm, for any SMPE

σ̂ we have Vm(xm|σ̂) = 0. This implies Um(xm|σ̂) > Um(x|σ̂) for ∀x ∈ X \ {xm} and,

by Proposition 1, A(xm|σ̂) = {xm}. Any SMPE σ̂ thus has to satisfy p̂i(xm) = xm for

∀i ∈ N , or, in terms of the simple strategies, pi(xm|x̂i) = xm for ∀i ∈ N , which rewrites

as x̂i ≥ xm for ∀i ∈ Na, x̂i ≤ xm for ∀i ∈ Nb and x̂m = xm. �

A1.3 Proof of Lemma 2

To see part 1, any simple strategy pi with any bliss point x̂i ∈ R satisfies pi(db(x)|x̂i) =

pi(da(x)|x̂i) for ∀x ∈ X. The claim then follows from (2).38 Part 2 follows easily from the

symmetry of Vi for ∀i ∈ N about xm and asymmetry of the stage utilities for ∀i ∈ N \{m}
and symmetry of um.

To prove part 3, continuity of the dynamic utilities Ui on X, fix x̂ with x̂i ≥ xm

for ∀i ∈ Na, x̂i ≤ xm for ∀i ∈ Nb and x̂m = xm and induced profile of strategies σ.

As Ui(x|σ) = ui(x) + δVi(x|σ), we need to prove the continuation value functions Vi are

continuous. From pi(x|x̂i) ∈ {db(x), da(x)} for any i ∈ NC(x|σ) and x ∈ D(σ) and from

symmetry of Vi about xm, we can write (2) for ∀x ∈ D(σ)

Vi(x|σ) =

∑
j∈N rjui(pj(x|x̂j)) + δ

∑
j∈C(x|σ) rjVi(pj(x|x̂j)|σ)

1− δrnc(x|σ)
(A3)

which is continuous, for ∀i ∈ N , by continuity of pj(x|x̂j) for ∀j ∈ N , constancy of pj(x|x̂j)
for ∀j ∈ C(x|σ) and by local, that is on any interval induced byND(σ), constancy of C(x|σ)

and rnc(x|σ).

What remains is, for ∀i ∈ N , Vi(x
−|σ) = Vi(x|σ) = Vi(x

+|σ) for any x ∈ ND(σ).

For x = xm the claim follows from pj(x
−
m|x̂j) = pj(xm|x̂j) = pj(x

+
m|x̂j) = xm for ∀j ∈

N , C(x−m|σ) = C(x+m|σ), rnc(x
−
m|σ) = rnc(x

+
m|σ), Vi(x

−
m|σ) = Vi(x

+
m|σ) (by part 1) and

Vi(x
−
m|σ) = Vi(xm|σ) = ui(xm)

1−δ .

For x ∈ ND(σ) \ {xm} let us focus on cases when x > xm. When x < xm the

argument is symmetric and hence omitted. First notice that pj(x
−|x̂j) = pj(x|x̂j) =

38 We do not rule out x̂i = ±∞. The meaning of, say, x̂i =∞ in pi is player i ∈ Na proposing da(x) for
any status-quo x. We can use (2) since, when x̂i ≥ xm for ∀i ∈ Na, x̂i ≤ xm for ∀i ∈ Nb and x̂m = xm,
any proposal generated by the simple proposal strategy pi of any i ∈ N is always accepted, which in turn
follows from the properties of the social acceptance correspondence A proved in part 6. As is standard,
for now we conjecture that part 6 holds and then confirm that it is the case.
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pj(x
+|x̂j) for ∀j ∈ N and ∀x ∈ X so that the first sum in the numerator of (A3) is

continuous. Now use i) Vi(pj(x
−|x̂j)|σ) = Vi(pj(x

+|x̂j)|σ) equal to Vi(x
−|σ) for ∀j ∈ Na

and to Vi(db(x)+|σ) for ∀j ∈ Nb when j ∈ C(x+|σ) \ C(x−|σ) (players who switch from

non-constant to constant part of their strategy at x), ii) Vi(x
−|σ) = Vi(db(x)+|σ) (by part

1), iii) C(x−|σ) ∩ C(x+|σ) = C(x−|σ) (players switch to proposing constant policy at x),

iv) rnc(x
−|σ) = rnc(x

+|σ) +
∑

j∈C(x+|σ)\C(x−|σ) rj and v) Vi(pj(x
−|x̂j)|σ) = Vi(pj(x|x̂j)|σ) =

Vi(pj(x
+|x̂j)|σ) for ∀j ∈ C(x−|σ) ∩ C(x+|σ) (players that propose constant policy in the

neighbourhood, below and above, of x) to rewrite (A3), for any i ∈ N ,

Vi(x
+|σ) =

=

∑
j∈N rjui(pj(x

+|x̂j)) + δ
∑

j∈C(x+|σ) rjVi(pj(x
+|x̂j)|σ)

1− δrnc(x+|σ)

=

∑
j∈N rjui(pj(x

−|x̂j)) + δ

[ ∑
j∈C(x−|σ) rjVi(pj(x

−|x̂j)|σ)∑
j∈C(x+|σ)\C(x−|σ) rjVi(x

−|σ)

]
1− δrnc(x−|σ) + δ

∑
j∈C(x+|σ)\C(x−|σ) rj

=
Vi(x

−|σ)(1− δrnc(x−|σ)) + Vi(x
−|σ)δ

∑
j∈C(x+|σ)\C(x−|σ) rj

1− δrnc(x−|σ) + δ
∑

j∈C(x+|σ)\C(x−|σ) rj

= Vi(x
−|σ).

(A4)

To prove Vi(x|σ) = Vi(x
−|σ), we have, from Vi(pj(x|x̂i)|σ) = Vi(pj(x

−|x̂i)|σ) for ∀j ∈
C(x−|σ) and Vi(pj(x|x̂j)|σ) = Vi(x|σ) for ∀j ∈ NC(x−|σ),

Vi(x|σ) =
∑
j∈N

rj [ui(pj(x|x̂j)) + δVi(pj(x|x̂j)|σ)]

=
∑
j∈N

rjui(pj(x
−|x̂j)) + δ

∑
j∈C(x−|σ)

Vi(pj(x
−|x̂j)|σ)

+ δrnc(x
−|σ)Vi(x|σ)

= Vi(x
−|σ)(1− δrnc(x−|σ)) + δrnc(x

−|σ)Vi(x|σ)

(A5)

and the claim, for any i ∈ N , follows.

Part 4, U ′′i (x|σ) < 0 for ∀x ∈ D(σ), follows from ui(x)′′ = −2, the only non-constant

term in (A3) being
∑
j∈NC(x|σ) rjui(pj(x|x̂j))

1−δrnc(x|σ) , u′′i (pj(x|x̂j)) = −2[p′j(x|x̂j)]2 and p′j(x|x̂j) = ±1

for j ∈ NC(x|σ). Thus we have U ′′i (x|σ) = −2 + δ −2rnc(x|σ)
1−δrnc(x|σ) = −2

1−δrnc(x|σ) < 0 for any

x ∈ D(σ) and i ∈ N .

To prove part 5, we only need to show that Um(x|σ) is increasing for x < xm and

decreasing for x > xm. For any i ∈ N and x ∈ D(σ) we have, using (A3) and p′j(x|x̂j) = ±1
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for ∀j ∈ NC(x|σ) depending on x ≷ xm and j ∈ Na or j ∈ Nb in obvious manner,

U ′i(x|σ) =


−2[x− xi − 2δrnc,a(x|σ)(xm − xi)]

1− δrnc(x|σ)
if x < xm

−2[x− xi − 2δrnc,b(x|σ)(xm − xi)]
1− δrnc(x|σ)

if x > xm.

(A6)

Evaluating the derivative for m shows that Um is, for ∀x ∈ D(σ), increasing for x < xm

and decreasing for x > xm. By continuity of Um the claim follows.

Finally part 6, A(x|σ) = [db(x), da(x)] for ∀x ∈ X, is a consequence of part 5 and of

Proposition 1. �

A1.4 Proof of Lemma 3

Let x̂ be a profile of strategic bliss points from Algorithm 1. To see part 1, if δ = 0,

the algorithm in step t computes x̂i,t = xi for ∀t ∈ {1, . . . , n − 1} and ∀i ∈ N . Hence

Rt = ∅ for ∀t ∈ {1, . . . , n − 1} since the condition defining Rt, (xi − xm)(x̂i,t − xm) ≤ 0,

rewrites as (xi − xm)2 ≤ 0 and is violated. The algorithm thus sets x̂i = xi in every step

t ∈ {1, . . . , n− 1} and because x̂m = xm, x̂ = x follows.

To prove part 2, assume 1 ≤ 2δra. When 1 ≤ 2δrb the argument is symmetric and

omitted. 1 ≤ 2δra implies 1 > 2δrb; 1 ≤ 2δrb and 1 ≤ 2δra sum to 1 ≤ δ(ra + rb), which

contradicts δ < 1 and ra + rb = 1− rm < 1. In step 0, the algorithm produces x̂m = xm.

In step 1, the algorithm computes x̂i,1 for ∀i ∈ N \ {m} using r1,a = ra and r1,b = rb. Now

notice that, in general step t of the algorithm, (xi − xm)(x̂i,t − xm) used to construct Rt

rewrites as (xi−xm)2(1− 2δrt,a) if i ∈ Nb and as (xi−xm)2(1− 2δrt,b) if i ∈ Na. In step 1

this means R1 = Nb when 1 ≤ 2δra and 1 > 2δrb. At this point the algorithm drops one of

the players in R1 = Nb, say j′, and sets x̂j′ = xm, which implies that P2 = Na ∪Nb \ {j′}
and hence r2,a = ra and r2,b = rb − rj′ . Clearly R2 = Nb \ {j′}, the algorithm in step 2

drops j′′ ∈ R2 ( Nb and sets x̂j′′ = xm, which implies P3 = Na ∪ Nb \ {j′, j′′} and hence

r3,a = ra and r3,b = rb − rj′ − rj′′ . The algorithm continues in similar manner, dropping

j ∈ Nb and setting x̂j = xm, until step n−1
2

, in which it drops last player from Nb. This

implies Pn−1
2

+1 = Na and hence rn−1
2

+1,a = ra and rn−1
2

+1,b = 0. For the remaining steps

the algorithm thus sets x̂i = xi for all i ∈ Na.

To prove part 3, because the algorithm is dropping players and rt,a and rt,b are sums

of recognition probabilities of the players that remain in the algorithm, rt,a ≥ rt+1,a and

rt,b ≥ rt+1,b for ∀t ∈ {1, . . . , n−2}. 1 > 2δra and 1 > 2δrb with r1,a = ra and r1,b = rb thus

imply 1 > 2δrt,a and 1 > 2δrt,b for ∀t ∈ {1, . . . , n − 1}. For any step t ∈ {1, . . . , n − 1}
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of the algorithm, this implies Rt = ∅, x̂i,t > xm if i ∈ Na and x̂i,t < xm if i ∈ Nb and

hence x̂m−1 < x̂m = xm < x̂m+1. To prove x̂i < x̂i+1 for ∀i ∈ N \ {n}, we thus need to

show x̂i < x̂i+1 for ∀i ∈ Na \ {n} and ∀i ∈ Nb \ {m − 1}. We do so for i ∈ Na \ {n}.
For i ∈ Nb \ {m − 1} the argument is similar and omitted. Note that, if i ∈ Na and

t ∈ {1, . . . , n− 1}, ∂x̂i,t
∂xi

= 1− 2δrt,b > 0 and
∂x̂i,t
∂rt,b

= 2δ(xm − xi) < 0. The first inequality

implies x̂i,t < x̂i+1,t if i ∈ Na \ {n} and t ∈ {1, . . . , n− 1}. The second inequality implies

x̂i,t ≤ x̂i,t+1 if i ∈ Na and t ∈ {1, . . . , n − 2}. Hence, if the algorithm drops player

i ∈ Na \ {n} in step t and player i + 1 in step t′, then t < t′, which allows us to write

x̂i = x̂i,t < x̂i+1,t ≤ x̂i+1,t′ = x̂i+1.

To prove d(x̂i) 6= d(x̂j) for any pair of players {i, j} with i 6= j, for ∀t ∈ {1, . . . , n− 1},

d(x̂i,t) = (xi − xm)(1− 2δrt,b) if i ∈ Na

d(x̂i,t) = (xm − xi)(1− 2δrt,a) if i ∈ Nb

(A7)

and hence d(x̂i,t) < d(x̂i+1,t) if i ∈ Na \ {n} and d(x̂i,t) < d(x̂i−1,t) if i ∈ Nb \ {1}. In step

t ∈ {1, . . . , n− 1} of the algorithm, arg mini∈Pt d(x̂i,t) thus either includes unique player i′

or pair of players {i′, j′} such that i′ ∈ Na and j′ ∈ Nb. In the former case, x̂i′ = x̂i′,t and

d(x̂i′) < d(x̂i,t) ≤ d(x̂i,t+1) for ∀i ∈ Pt \{i′}, where the weak inequality follow from the fact

that rt,a and rt,b are non-increasing in t and thus d(x̂i,t) ≤ d(x̂i,t+1) for ∀t ∈ {1, . . . , n− 2}
for any i ∈ N . When the algorithm drops i′′ ∈ Pt+1 = Pt \ {i′} in step t+ 1, x̂i′′ = x̂i′′,t+1

and hence d(x̂i′) < d(x̂i′′). In the latter case, suppose, without loss of generality, that i′

is dropped. Then x̂i′ = x̂i′,t and d(x̂i′) < d(x̂i,t) ≤ d(x̂i,t+1) for ∀i ∈ Pt \ {i′, j′}. It thus

suffices to show that d(x̂i′,t) < d(x̂j′,t+1), which follows from d(x̂i′,t) = d(x̂j′,t) and the

fact that when i′ ∈ Na is dropped, rt,a > rt+1,a implies d(x̂i,t) < d(x̂i,t+1) for any i ∈ Nb,

including j′ ∈ Nb. �

A1.5 Proof of Proposition 2

We know from Lemma 1 that if x̂ induces SMPE σ, then x̂i ≥ xm for ∀i ∈ Na, x̂i ≤ xm for

∀i ∈ Nb and x̂m = xm. From Lemma 3, the same is true for any x̂ produced by Algorithm

1. Lemma 2 thus applies when we refer to x̂ that constitutes an SMPE or is produced by

Algorithm 1.

Case 1: When δ = 0, clearly there exists unique x̂ that induces SMPE σ, x̂ = x, and

we know from Lemma 3 part 1 that Algorithm 1 produces x̂ = x.

Case 2: When δ ∈ (0, 1) and 1 ≤ 2δra, by Lemma 3 part 2, we need to show that if x̂

induces SMPE σ, then it satisfies x̂i = xm for ∀i ∈ N \Na and x̂i = xi for ∀i ∈ Na. Note
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that 1 ≤ 2δra implies 1 > 2δrb as shown in the proof of Lemma 3. Fix x̂ and suppose it

induces SMPE σ. We proceed with a series of claims.

First, we claim x̂i > xm for ∀i ∈ Na. Suppose, towards a contradiction, that x̂i = xm for

some i ∈ Na. Using (A6) and rnc,b(x
+
m|σ) ≤ rb, we have U ′i(x

+
m|σ) =

−2(xm−xi)(1−2δrnc,b(x+m|σ))
1−δrnc(x+m|σ)

>

0. Hence, there exists ε′ > 0 such that Ui(xm|σ) < Ui(xm + ε|σ) and, from x̂i = xm,

pi(xm + ε|x̂i) = xm for ∀ε ∈ (0, ε′), which, because xm + ε ∈ A(xm + ε|σ) for ∀ε ∈ (0, ε′),

contradicts x̂i = xm being part of x̂ that induces SMPE σ.

Second, we claim x̂i = xm for ∀i ∈ Nb. Suppose, towards a contradiction, that x̂i < xm

for some i ∈ Nb. Using (A6) and rnc,a(x
−
m|σ) = ra ≥ 1

2δ
, where the equality follows from

x̂j > xm for ∀j ∈ Na proven in the previous claim, U ′i(x
−
m|σ) = −2(xm−xi)(1−2δra)

1−δrnc(x−m|σ)
≥ 0.

Because U ′′i (x|σ) < 0 for ∀x ∈ D(σ) by Lemma 2 part 4, there exists ε′ > 0 such that

Ui(xm|σ) > Ui(xm− ε|σ) and, from x̂i < xm, pi(xm− ε|x̂i) = xm− ε for ∀ε ∈ (0, ε′), which,

because xm ∈ A(xm−ε|σ) for ∀ε ∈ (0, ε′), contradicts x̂i < xm being part of x̂ that induces

SMPE σ.

Third, we claim x̂i = xi for ∀i ∈ Na. Suppose, towards a contradiction, that x̂i 6= xi

for some i ∈ Na. By the first claim, this implies x̂i ∈ (xm, xi) ∪ (xi,∞). Using (A6) and

rnc,b(x|σ) = 0 for ∀x ∈ D(σ), where the equality follows from x̂j = xm for ∀j ∈ Nb proven

in the previous claim, sgn [U ′i(x̂
−
i |σ)] = sgn [U ′i(x̂

+
i |σ)] = sgn [xi − x̂i]. If x̂i ∈ (xm, xi),

there exists ε′ > 0 such that, for ∀ε ∈ (0, ε′), Ui(x̂i|σ) < Ui(x̂i + ε|σ), pi(x̂i + ε|x̂i) = x̂i

and x̂i + ε ∈ A(x̂i + ε|σ). If x̂i ∈ (xi,∞), there exists ε′ > 0 such that, for ∀ε ∈ (0, ε′),

Ui(xi|σ) > Ui(xi + ε|σ), pi(xi + ε|x̂i) = xi + ε and xi ∈ A(xi + ε|σ). Each case contradicts

x̂i being part of x̂ that induces SMPE σ.

Case 3: When δ ∈ (0, 1) and 1 ≤ 2δrb, by Lemma 3 part 2, we need to show that if x̂

induces SMPE σ, then it satisfies x̂i = xm for ∀i ∈ N \ Nb and x̂i = xi for ∀i ∈ Nb. The

proof is analogous to the proof of case 2 and is omitted.

Case 4: When δ ∈ (0, 1), 1 > 2δra and 1 > 2δrb, we need to show that if x̂ induces

SMPE σ, then x̂ ∈ X̂, where X̂ is the set of profiles of strategic bliss points produced by

Algorithm 1. We start by proving several properties of x̂ that induces SMPE σ.

Lemma A1. Assume δ ∈ (0, 1), 1 > 2δra and 1 > 2δrb. If x̂ induces SMPE σ, then

1. x̂i > xm for ∀i ∈ Na and x̂i < xm for ∀i ∈ Nb;

2. U ′i(x̂
−
i |σ) = 0 for ∀i ∈ Na and U ′i(x̂

+
i |σ) = 0 for ∀i ∈ Nb;

3. U ′i(x
−|σ) < U ′i+1(x

−|σ) and U ′i(x
+|σ) < U ′i+1(x

+|σ) for ∀x ∈ X and ∀i ∈ N \ {n};

4. x̂i < x̂i+1 for ∀i ∈ N \ {n} and d(x̂i) 6= d(x̂j) for ∀i ∈ N , ∀j ∈ N , i 6= j.
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Proof. To show part 1 of the lemma, note that x̂i > xm for ∀i ∈ Na follows from the first

claim in case 2. The argument there relied only on 1 > 2δrb. An analogous argument can

be used to prove x̂i < xm for ∀i ∈ Nb if 1 > 2δra.

To show part 2, we show U ′i(x̂
−
i |σ) = 0 for ∀i ∈ Na. The argument proving U ′i(x̂

+
i |σ) =

0 for ∀i ∈ Nb is analogous and omitted. Suppose, towards a first contradiction, that

U ′i(x̂
−
i |σ) < 0 for some i ∈ Na. By part 1, x̂i > xm. Hence, there exists ε′ > 0 such

that, for ∀ε ∈ (0, ε′), Ui(x̂i|σ) < Ui(x̂i − ε|σ), pi(x̂i|x̂i) = x̂i and x̂i − ε ∈ A(x̂i|σ), which

contradicts x̂i being part of x̂ that induces SMPE σ. Suppose now, towards a second

contradiction, that U ′i(x̂
−
i |σ) > 0 for some i ∈ Na. Using (A6) and x̂i > xm,

U ′i(x̂
−
i |σ) = −2

1−δrnc(x̂−i |σ)

[
x̂i − xi − 2δrnc,b(x̂

−
i |σ)(xm − xi)

]
U ′i(x̂

+
i |σ) = −2

1−δrnc(x̂+i |σ)

[
x̂i − xi − 2δrnc,b(x̂

+
i |σ)(xm − xi)

]
.

(A8)

Because rnc,b(x
−|σ) ≥ rnc,b(x

+|σ) for any x > xm, U ′i(x̂
−
i |σ) > 0 implies U ′i(x̂

+
i |σ) > 0.

Hence, there exists ε′ > 0 such that, for ∀ε ∈ (0, ε′), Ui(x̂i|σ) < Ui(x̂i+ε|σ), pi(x̂i+ε|x̂i) = x̂i

and x̂i + ε ∈ A(x̂i + ε|σ), which contradicts x̂i being part of x̂ that induces SMPE σ.

For part 3, taking limits from below and from above in (A6) and differentiating with

respect to xi gives, for ∀x ∈ X,

∂
∂xi
U ′i(x

−|σ) =


2

1−δrnc(x−|σ)

[
1− 2δrnc,a(x

−|σ)
]

if x ≤ xm

2
1−δrnc(x−|σ)

[
1− 2δrnc,b(x

−|σ)
]

if x > xm

∂
∂xi
U ′i(x

+|σ) =


2

1−δrnc(x+|σ)

[
1− 2δrnc,a(x

+|σ)
]

if x < xm

2
1−δrnc(x+|σ)

[
1− 2δrnc,b(x

+|σ)
]

if x ≥ xm

(A9)

which, by rnc,a(x|σ) ≤ ra < 1
2δ

and rnc,b(x|σ) ≤ rb <
1
2δ

for ∀x ∈ D(σ) and hence

rnc,g(x
−|σ) ≤ rg and rnc,g(x

+|σ) ≤ rg for ∀x ∈ X and g ∈ {a, b}, implies ∂
∂xi
U ′i(x

−|σ) > 0

and ∂
∂xi
U ′i(x

+|σ) > 0.

To show part 4, we first prove x̂i < x̂i+1 for ∀i ∈ N \ {n}. By part 1, x̂i < xm for

∀i ∈ Nb and x̂i > xm for ∀i ∈ Na. It thus suffices to prove x̂i < x̂i+1 for ∀i ∈ Na \ {n}
and ∀i ∈ Nb \ {m − 1}. We do so for i ∈ Na \ {n}. For i ∈ Nb \ {m − 1} the argument

is similar and omitted. Suppose, towards a first contradiction, that x̂i = x̂i+1 for some

i ∈ Na \ {n}. By part 1, x̂i > xm, which by part 2 implies U ′i(x̂
−
i |σ) = 0 and hence, by

part 3, U ′i+1(x̂
−
i |σ) > 0. The last inequality contradicts U ′i+1(x̂

−
i |σ) = 0, which follows by

part 2 and x̂i = x̂i+1. Suppose, towards a second contradiction, that x̂i+1 < x̂i. By part

2, U ′i+1(x̂
−
i+1|σ) = 0, which by part 3 implies U ′i(x̂

−
i+1|σ) < 0. Because x̂i+1 > xm, there
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exists ε′ > 0 such that, for ∀ε ∈ (0, ε′), Ui(x̂i+1|σ) < Ui(x̂i+1 − ε|σ), pi(x̂i+1|x̂i) = x̂i+1 and

x̂i+1 − ε ∈ A(x̂i+1|σ), which contradicts x̂i being part of x̂ that induces SMPE σ.

To prove d(x̂i) 6= d(x̂j) for any pair of players {i, j} such that i 6= j, because x̂i < x̂i+1

for ∀i ∈ N \ {n}, it suffices to rule out d(x̂i) = d(x̂j) for ∀i ∈ Nb and ∀j ∈ Na. Suppose,

towards contradiction, that there exists i ∈ Nb and j ∈ Na such that d(x̂i) = d(x̂j). By

part 2, U ′j(x̂
−
j |σ) = 0. Because d(x̂i) = d(x̂j) and i ∈ Nb, rnc,b(x̂

−
j |σ) > rnc,b(x̂

+
j |σ), which

from (A8) implies U ′j(x̂
+
j |σ) > 0. Hence, there exists ε′ > 0 such that, for ∀ε ∈ (0, ε′),

Uj(x̂j|σ) < Uj(x̂j + ε|σ), pj(x̂j + ε|x̂j) = x̂j and x̂j + ε ∈ A(x̂j + ε|σ), which contradicts x̂j

being part of x̂ that induces SMPE σ. �

Returning to case 4, for any x̂ that constitutes an SMPE or is produced by Algorithm

1, define iteratively, for t ∈ {0, . . . , n− 1} starting with ix̂(0) = m,

ix̂(t) = arg min
i∈N\{ix̂(0),...,ix̂(t−1)}

d(x̂i) (A10)

with the equal sign justified by d(x̂i) 6= d(x̂j) for any pair of players {i, j} in x̂ for which

we define ix̂. ix̂(t) is index of player with (t+ 1)th smallest d(x̂i) in x̂, starting from t = 0.

Using ix̂ define for t ∈ {0, . . . , n− 1}

o(x̂, t) = (ix̂(0), ix̂(1), . . . , ix̂(t)) (A11)

and write o(x̂, t) = o(x̂′, t) if and only if ix̂(k) = ix̂′(k) for ∀k ∈ {0, . . . , t}. o(x̂, n − 1)

is the set of players in N ordered by d(x̂i) in x̂, so that d(x̂ix̂(k)) < d(x̂ix̂(k+1)) for ∀k ∈
{0, . . . , n− 2}.

Lemma A2. Assume δ ∈ (0, 1), 1 > 2δra and 1 > 2δrb. If x̂o induces SMPE σ and

x̂ ∈ X̂, then o(x̂, t′) = o(x̂o, t′) for some t′ ∈ {0, . . . , n − 1} implies x̂ix̂(t) = x̂oix̂o (t) for

∀t ∈ {0, . . . , t′}.

Proof. Fix x̂o that induces SMPE σo and x̂ ∈ X̂ produced by Algorithm 1. Suppose

o(x̂o, t′) = o(x̂, t′) for some t′ ∈ {0, . . . , n − 1}. The proof proceeds by induction on t.

For t = 0, we have ix̂(0) = ix̂o(0) = m and we know x̂om = x̂m = xm. Suppose that

x̂ix̂(t′′) = x̂oix̂o (t′′) for ∀t′′ ∈ {0, . . . , t} for some t < t′. We need to show x̂ix̂(t+1) = x̂oix̂o (t+1).

Because o(x̂o, t′) = o(x̂, t′) and t + 1 ≤ t′, let us use only the ix̂ indexing. Denote

j′ = ix̂(t) and j′′ = ix̂(t + 1). We need to show x̂j′′ = x̂oj′′ . Assume that j′′ ∈ Na. When

j′′ ∈ Nb, the proof is similar and omitted. Denote Nj′ = ∪ti=0ix̂(i) and Nj′′ = N \Nj′ .

By definition of j′ and j′′, d(x̂j′) < d(x̂j′′) and d(x̂oj′) < d(x̂oj′′). Because x̂ix̂(t′′) = x̂oix̂(t′′)
for ∀t′′ ∈ {0, . . . , t}, we know x̂i = x̂oi for ∀i ∈ Nj′ , so that d(x̂i) < d(x̂j′) and d(x̂oi ) < d(x̂oj′)
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for ∀i ∈ Nj′ \ {j′}. From o(x̂o, t+ 1) = o(x̂, t+ 1), we know j′′ = ix̂(t+ 1) = ix̂o(t+ 1), so

that d(x̂j′′) < d(x̂i) and d(x̂oj′′) < d(x̂oi ) for ∀i ∈ Nj′′ \ {j′′}.
From these rnc,a(x|σo) =

∑
i∈Nj′′∩Na

ri and rnc,b(x|σo) =
∑

i∈Nj′′∩Nb
ri for ∀x ∈ (da(x̂

o
j′), x̂

o
j′′) ⊂

D(σo). Using (A6) and U ′j′′(x̂
o−
j′′ |σo) = 0 from Lemma A1 part 2, x̂oj′′ = xj′′+2δ

∑
i∈Nj′′∩Nb

ri (xm−
xj′′).

To calculate x̂j′′ , Algorithm 1 drops player j′ in step t, which means the algorithm uses,

in step t+ 1 when j′′ is dropped and x̂j′′ set, Pt+1 = Nj′′ . This gives rt+1,b =
∑

i∈Nj′′∩Nb
ri

and x̂j′′ = xj′′ + 2δ
∑

i∈Nj′′∩Nb
ri (xm − xj′′). Clearly, x̂j′′ = x̂oj′′ . �

Returning to case 4, fix x̂o that induces SMPE σo. We need to show x̂o ∈ X̂. Suppose

x̂o /∈ X̂. For t ∈ {0, . . . , n− 1} define

X̂t = {x̂ ∈ X̂|o(x̂, t) = o(x̂o, t)}. (A12)

X̂t is the set of profiles of strategic bliss points from Algorithm 1 that satisfy ix̂(k) = ix̂o(k)

for all k ∈ {0, . . . , t}. By Lemma A2, if x̂ ∈ X̂t′ , then x̂ix̂(t) = x̂oix̂o (t) for ∀t ∈ {0, . . . , t′}.
Clearly, X̂t+1 ⊆ X̂t for ∀t ∈ {0, . . . , n − 2}. Because x̂om = xm and x̂m = xm for ∀x̂ ∈ X̂,

X̂0 = X̂. From x̂o /∈ X̂, we also have X̂n−1 = ∅; if X̂n−1 6= ∅ we would have o(x̂, n− 1) =

o(x̂o, n− 1) for x̂ ∈ X̂n−1 and hence, by Lemma A2, x̂ = x̂o.

Now pick t such that X̂t 6= ∅ and X̂t+1 = ∅ and fix x̂ ∈ X̂t. Clearly, t ∈ {0, . . . , n− 2}
and o(x̂, t) = o(x̂o, t) follows from definition of X̂t. Denote j′ = ix̂(t) = ix̂o(t), j

′′
a =

ix̂(t+ 1), j′′o = ix̂o(t+ 1), Nj′ = ∪ti=0ix̂(i) and Nj′′ = N \Nj′ .

By definition of j′ and j′′a , d(x̂i) < d(x̂j′) < d(x̂j′′a ) < d(x̂j) for ∀i ∈ Nj′ \ {j′} and

∀j ∈ Nj′′ \ {j′′a}. Similarly, d(x̂oi ) < d(x̂oj′) < d(x̂oj′′o ) < d(x̂oj) for ∀i ∈ Nj′ \ {j′} and

∀j ∈ Nj′′ \ {j′′o}. From Lemma A2 and o(x̂, t) = o(x̂o, t), we also know x̂i = x̂oi for

∀i ∈ Nj′ .

From these rnc,a(x|σo) =
∑

i∈Nj′′∩Na
ri and rnc,b(x|σo) =

∑
i∈Nj′′∩Nb

ri for ∀x ∈ (db(x̂
o
j′′o

), db(x̂
o
j′))∪

(da(x̂
o
j′), da(x̂

o
j′′o

)) ⊂ D(σo). Also, Algorithm 1 drops player j′ in step t, which means it uses,

in step t+ 1 when j′′a is dropped and x̂j′′a set, Pt+1 = Nj′′ . This gives rt+1,a =
∑

i∈Nj′′∩Na
ri

and rt+1,b =
∑

i∈Nj′′∩Nb
ri.

We now show d(x̂j′′a ) = d(x̂oj′′o ). Suppose, towards a first contradiction, that d(x̂oj′′o ) <

d(x̂j′′a ). From Lemma A1 part 2, U ′j′′o (x̂o−j′′o |σ
o) = 0 if j′′o ∈ Na and U ′j′′o (x̂o+j′′o |σ

o) = 0 if

j′′o ∈ Nb. Using (A6), we get

x̂oj′′o =

 xj′′o + 2δ
∑

i∈Nj′′∩Nb
ri (xm − xj′′o ) if j′′o ∈ Na

xj′′o + 2δ
∑

i∈Nj′′∩Na
ri (xm − xj′′o ) if j′′o ∈ Nb

(A13)

58



Algorithm 1 in step t+1 calculates x̂j′′o ,t+1 and x̂j′′a ,t+1 and, since j′′a is dropped and x̂j′′a set,

we know d(x̂j′′a ) ≤ d(x̂j′′o ,t+1). Because the algorithm in step t+ 1 uses Pt+1 = Nj′′ , clearly

x̂j′′o ,t+1 = x̂oj′′o and hence d(x̂j′′a ) ≤ d(x̂oj′′o ), which yields the desired contradiction. Suppose

now, towards a second contradiction, that d(x̂j′′a ) < d(x̂oj′′o ). From Algorithm 1,

x̂j′′a =

 xj′′a + 2δ
∑

i∈Nj′′∩Nb
ri (xm − xj′′a ) if j′′a ∈ Na

xj′′a + 2δ
∑

i∈Nj′′∩Na
ri (xm − xj′′a ) if j′′a ∈ Nb

(A14)

Because d(x̂oj′) = d(x̂j′) < d(x̂j′′a ), we can use x̂j′′a in (A6) to show that U ′j′′a (x̂j′′a |σo) = 0.

Assume j′′a ∈ Na. When j′′a ∈ Nb the argument is similar and omitted. From j′′a ∈ Nj′′ ,

we have d(x̂oj′′o ) < d(x̂oj′′a ) and hence x̂j′′a < x̂oj′′a . U ′j′′a (x̂j′′a |σo) = 0 and U ′′j′′a (x|σo) < 0

for ∀x ∈ D(σo) from Lemma 2 part 4 then imply that there exists ε′ > 0 such that, for

∀ε ∈ (0, ε′), Uj′′a (x̂j′′a |σo) > Uj′′a (x̂j′′a +ε|σo), pj′′a (x̂j′′a +ε|x̂oj′′a ) = x̂j′′a +ε and x̂j′′a ∈ A(x̂j′′a +ε|σo),
which contradicts x̂oj′′a being part of x̂o that induces SMPE σo.

Having shown d(x̂j′′a ) = d(x̂oj′′o ), Algorithm 1 in step t+ 1 calculates x̂j′′a ,t+1 and x̂j′′o ,t+1

and, since j′′a is dropped and x̂j′′a set, d(x̂j′′a ) = d(x̂j′′a ,t+1). Because the algorithm in step t+1

uses Pt+1 = Nj′′ , x̂j′′o ,t+1 = x̂oj′′o so that d(x̂j′′a ,t+1) = d(x̂j′′o ,t+1). Thus there exists x̂′ ∈ X̂,

such that ix̂(k) = ix̂′(k) for ∀k ∈ {0, . . . , t} and ix̂′(t + 1) = j′′o , created by dropping

j′′o instead of j′′a in step t + 1. Because o(x̂, t) = o(x̂o, t) = o(x̂′, t) and ix̂′(t + 1) = j′′o ,

o(x̂′, t+ 1) = o(x̂o, t+ 1), which implies x̂′ ∈ X̂t+1, a contradiction to X̂t+1 = ∅. �

A1.6 Proof of Lemma 4

By Lemma 3, it suffices to show the lemma only for δ ∈ (0, 1), 1 > 2δra and 1 > 2δrb; if

δ = 0 or δ ∈ (0, 1) and 1 ≤ 2δrg for some g ∈ {a, b}, then Algorithm 1 produces unique

x̂. Fix x̂ from Algorithm 1 applied to G with x and assume another x̂′ produced by the

algorithm exists.

We follow the steps of Algorithm 1 when producing x̂. In step 0, the algorithm sets

x̂m = xm. From 1 > 2δra and 1 > 2δrb, Rt = ∅ for any remaining step t ∈ {1, . . . , n− 1}.
Because x̂′ exists, there must be step t′ at which the algorithm calculates x̂i′,t′ and x̂j′,t′

with d(x̂i′,t′) = d(x̂j′,t′), drops i′ and retains j′. Suppose t′ is the first such step, that is

in all steps t ∈ {0, . . . , t′ − 1} the algorithm uniquely selects a player to drop. Assume

i′ ∈ Na. When i′ ∈ Nb the argument is similar and omitted.

We start construction of the claimed perturbation x(ε) by setting xi(ε) = xi for ∀i ∈ N\
{i′} and xi′(ε) = xi′−ε.39 Because xi′−1 < xi′ , there exists ε̄ > 0 such that xi′−1(ε) < xi′(ε)

39 If i′ ∈ Nb the perturbation required is xi′(ε) = xi′ + ε.
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for ∀ε ∈ (0, ε̄). Clearly, limε→0 x(ε) = x. We claim that there exists ε̄ > 0 such that for

∀ε ∈ (0, ε̄), Algorithm 1 applied to x(ε) drops players in the same order as Algorithm 1

applied to x, uniquely selects player i′ to drop in step t′, and produces x̂(ε) such that

limε→0 x̂(ε) = x̂.

To see that players are dropped in the same order for x and x(ε), we know that in any

step t ∈ {0, . . . , t′ − 1} Algorithm 1 applied to x uniquely selects a player to drop and

does not drop player i′. This implies that, for ∀t ∈ {0, . . . , t′− 1}, there exists i ∈ Pt such

that d(x̂i,t) < d(x̂i′,t) = d(xi′)(1 − 2δrt,b). Because the perturbation affects only the bliss

point of player i′, we have, for ∀t ∈ {0, . . . , t′ − 1}, x̂i,t(ε) = x̂i,t for ∀i ∈ Pt \ {i′} and

d(x̂i′,t(ε)) = (d(xi′) − ε)(1 − 2δrt,b). Clearly, there exists ε̄ > 0 such that ∀ε ∈ (0, ε̄) and

∀t ∈ {0, . . . , t′−1}, there exists i ∈ Pt such that d(x̂i,t(ε)) < d(x̂i′,t(ε)). That is, players are

dropped in the same order for x and x(ε) in steps t ∈ {0, . . . , t′ − 1}. The same holds for

steps t ∈ {t′+1, . . . , n−1}, because the perturbation does not affect the bliss points of any

of the players still in the algorithm in these steps. What remains is to show that Algorithm

1 applied to x(ε) drops player i′ in step t′. To see this, we know that d(x̂i′,t′(ε)) < d(x̂i′,t′),

d(x̂i′,t′) = d(x̂j′,t′) and d(x̂j′,t′) = d(x̂j′,t′(ε)). This implies d(x̂i′,t′(ε)) < d(x̂j′,t′(ε)) so that

i′ is dropped in step t′. Because d(x̂i′,t′(ε)) < d(x̂j′,t′(ε)), the algorithm uniquely selects

player i′ to drop in step t′ and since the perturbation affects only the bliss point of player

i′, clearly limε→0 x̂(ε) = x̂.

We followed Algorithm 1 when producing x̂ until step t′, the first step at which the

algorithm offers an option regarding the player to drop. At that point we constructed x(ε)

such that the algorithm applied to x(ε) drops a unique player in step t′ and the order of

players dropped is the same for x and x(ε). We can now proceed iteratively, find step

t′′ > t′, the second step of the algorithm applied to x at which it gives an option regarding

the player to drop, and set xi′′(ε) = xi′′ − ε in x(ε) for player i′′ dropped in step t′′. The

order of players dropped again remains the same and the algorithm drops a unique player

i′′ in step t′′ when constructing x̂(ε). �

A1.7 Proof of Proposition 3

From Definition 3 of SMPE, the profile of strategies σ̂ constitutes an SMPE, by the one-

stage-deviation principle, if σ̂ induces Ui(σ̂) for ∀i ∈ N and A(σ̂) such that the set of

optimal proposal strategies, arising from maximization of Ui(σ̂) on A(σ̂) for any given

status-quo, includes σ̂.

Fix the profile of strategic bliss points x̂ from Algorithm 1 and the induced profile of

strategies σ. Clearly, the voting strategies subsumed in σ are optimal for every player.
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Because x̂ satisfies x̂i ≥ xm for ∀i ∈ Na, x̂i ≤ xm for ∀i ∈ Nb and x̂m = xm, by Lemma

2, pi(x|x̂i) ∈ A(x|σ) for ∀x ∈ X and ∀i ∈ N . That is, proposals with zero probability of

acceptance are never made. Also, for m we have x̂m = xm, hence the proposal strategy of

the median player is optimal by Lemma 2 part 5.

Now let us focus on player i ∈ Na. The argument for i ∈ Nb is symmetric and

omitted. By Lemma 2 part 2, player i will never propose any policy p < xm. Using the

shape of A from Lemma 2 part 6, we need to make sure that proposing da(x) for any

x ∈ [db(x̂i), da(x̂i)] and x̂i otherwise is optimal for i. Ui making this proposal strategy

optimal has to satisfy Ui(x|σ) ≤ Ui(y|σ) for any x ∈ [xm, x̂i] and y ∈ [xm, x̂i] such that

x < y and Ui(x̂i|σ) ≥ Ui(y|σ) for any y > x̂i. The first inequality follows from the way

Algorithm 1 constructs the strategic bliss points; it generates x̂ such that U ′i(x̂
−
i |σ) = 0

and U ′i(x
−|σ) ≥ 0 for any x ∈ ND(σ)∩ (xm, x̂i) which, combined with the piecewise strict

concavity of Ui, shows the claim. To ensure the second inequality, notice that from (A6)

we have U ′i(x|σ) ≤ 0 for x ∈ D(σ) and x ≥ xi so that Ui(xi|σ) ≥ Ui(y|σ) for any y > xi.

Hence we need to make sure that Ui(x̂i|σ) ≥ Ui(y|σ) for any y ∈ [x̂i, xi] in order for σ to

constitute an SMPE.

To prove that condition S is sufficient, part 1, first we note U ′i(x̂
+
i |σ) ≤ 0. When

x̂i = xm Algorithm 1 drops i because U ′i(x̂
+
i |σ) ≤ 0. When x̂i > xm Algorithm 1 drops i

because U ′i(x̂
−
i |σ) = 0 and we have U ′i(x̂

−
i |σ) = U ′i(x̂

+
i |σ) from (A6), the fact that exactly

one player is dropped in any step of the algorithm, d(x̂j) > d(x̂i) for any player j dropped

subsequently, and from rnc,b(x̂
−
i |σ) = rnc,b(x̂

+
i |σ) when i ∈ Na is dropped. Hence, by the

piecewise strict concavity of Ui, we need to ensure that U ′i(x
+|σ) ≤ 0 for ∀x ∈ ND(σ) ∩

(x̂i, xi) = Si(σ). Using (A6) this condition becomes x − xi − 2δrnc,b(x
+|σ)(xm − xi) ≥ 0,

which is what the condition S requires. Hence if S holds, we have Ui(x̂i|σ) ≥ Ui(y|σ) for

any y ∈ [x̂i, xi] and σ constitutes an SMPE.

To prove that condition N is necessary and sufficient, part 2, we note that Ui(x̂i|σ) ≥
Ui(y|σ) for any y ∈ [x̂i, xi] is equivalent to Ui(x̂i|σ) ≥ Ui(y|σ) for any y ∈ ((ND(σ) ∪
Li(σ)) ∩ (x̂i, xi)) ∪ {xi, x̂i} = Ni(σ). To see this, take two adjacent elements of ND(σ)

from [x̂i, xi], x
′ and x′′, with x′ < x′′. If Ui has no local maximum on [x′, x′′], that is

when [x′, x′′] ∩ Li(σ) = ∅, then Ui(x
′|σ) > Ui(x

′′|σ) ⇔ Ui(x
′|σ) > Ui(y|σ) and Ui(x

′|σ) <

Ui(x
′′|σ) ⇔ Ui(x

′|σ) < Ui(y|σ) for any y ∈ [x′, x′′] (equality cannot occur by the strict

concavity of Ui). If Ui has local maximum on [x′, x′′] then exactly one and we can set

x′′′ = [x′, x′′] ∩ Li(σ) and proceed with a similar argument using x′′′ instead of x′′.

To show that Ui(x̂i|σ) ≥ Ui(y|σ) for any y ∈ Ni(σ) is equivalent to N, for any dif-

ferentiable continuous function f , f(x) − f(z) = [
∫
f ′(a)da]xz . When f is not differen-

tiable at x, y, z with x < y < z but possesses one-sided derivatives at x, y, z, we
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have f(x) − f(z) = [
∫
f ′(a)da]x

+

y− + [
∫
f ′(a)da]y

+

z− . Now, (A6) for x > xm can be rewrit-

ten as U ′i(x|σ) = −2
1−δrnc(x|σ) [x− ci(x|σ)] where ci(x|σ) = xi + 2δrnc,b(x|σ)(xm − xi). Hence∫

U ′i(x|σ)dx = Ti(x|σ) = −2
1−δrnc(x|σ)

[
x2

2
− ci(x|σ)x

]
as rnc,b(x|σ) and rnc(x|σ) are both con-

stant on any interval induced by ND(σ). Condition N then takes into account that Ni(σ)

can have an arbitrary number of elements. When N holds, we have Ui(x̂i|σ) ≥ Ui(y|σ) for

any y ∈ [x̂i, xi] and σ constitutes an SMPE. When N fails, we have Ui(x̂i|σ) < Ui(y|σ)

for some y ∈ [x̂i, xi] and σ cannot constitute an SMPE, as i would prefer to deviate to

proposing y when the status-quo is y, as opposed to proposing x̂i that σ requires. �

A1.8 Proof of Proposition 4

Algorithm 1 in step t calculates

x̂i,t = xi + 2δrt,a(xm − xi) if i ∈ Nb

x̂i,t = xi + 2δrt,b(xm − xi) if i ∈ Na

(A15)

and drops i ∈ arg minj∈Pt d(x̂j,t) if Rt = ∅. Throughout the proof let us assume δ ≤ 1
2
, so

that 1 > 2δra and 1 > 2δrb, which implies Rt = ∅.
Suppose first that d(xi) 6= d(xj) for ∀i ∈ N and ∀j ∈ N . Writing d(x̂i,t) = d(xi)(1 −

2δrt,a) for i ∈ Nb and d(x̂i,t) = d(xi)(1− 2δrt,b) for i ∈ Na shows that d(x̂i,t) ∈ (d(xi)(1−
2δ), d(xi)] for ∀i ∈ N \ {m} and ∀t ∈ {1, . . . , n − 1}. Hence there exists δ̄ ∈ (0, 1) such

that for ∀δ ≤ δ̄, d(xj) < d(xi) implies d(xj) < d(xi)(1− 2δ) and hence d(x̂j,t) < d(x̂i,t) for

∀t ∈ {1, . . . , n − 1}. Since d(xi) 6= d(xj) for any pair of players, Algorithm 1 for ∀δ ≤ δ̄

drops the player with the smallest d(xi) in step 0 and the player with the second smallest

d(xi) in step 1. The algorithm continues in a similar manner, dropping the player with the

tth smallest d(xi) in step t− 1, until step n− 1 when it drops the player with the largest

d(xi). Denote the profile of strategic bliss points produced for G with δ by x̂(δ) and the

profile of strategies induced by σ(δ). Note that for ∀δ ≤ δ̄, x̂(δ) produced by Algorithm 1

is unique.

We now argue that, for ∀δ ≤ δ̄, x̂(δ) Algorithm 1 produces satisfies condition S. Let

it denote the player dropped in step t ∈ {0, . . . , n − 1}. For i0 = m we do not need to

verify S since it does not apply to the median player. For in−1, x̂in−1 = xin−1 is easy to

see from Algorithm 1 so that Sin−1(σ(δ)) = ∅ and condition S holds for in−1. For it with

t ∈ {1, . . . , n− 2}, we know that d(x̂it−1) ≤ d(xit−1) < d(x̂it) ≤ d(xit) < d(x̂it+1) ≤ d(xit+1)

for ∀δ ≤ δ̄ so that Sit(σ(δ)) = ∅ and condition S holds for it for any t ∈ {1, . . . , n− 2}.
Suppose now that a pair of players {i′, j′} with d(xi′) = d(xj′) exists. Without loss
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of generality let i′ ∈ Nb and j′ ∈ Na. If there are multiple such pairs, let {i′, j′} be

the one with the largest i′ and hence the smallest j′. By the preceding argument, there

exists δ̄ ∈ (0, 1), such that for ∀δ ≤ δ̄ Algorithm 1 drops players {i′ + 1, . . . , j′ − 1}
in steps t ∈ {0, . . . , j′ − i′ − 2}, drops players i′ and j′ in steps t′ = j′ − i′ − 1 and

t′ + 1, and drops players {1, . . . , i′ − 1} ∪ {j′ + 1, . . . , n} in steps t ∈ {t′ + 2, . . . , n − 1}.
Moreover, for ∀δ ≤ δ̄, d(xi) < d(x̂i′) and d(xi) < d(x̂j′) for ∀i ∈ {i′ + 1, . . . , j′ − 1} and

d(xi′) = d(xj′) < d(x̂i) for ∀i ∈ {1, . . . , i′−1}∪{j′+1, . . . , n}. This implies that condition

S holds for ∀i ∈ {i′+1, . . . , j′−1} and that Si′(σ(δ)) and Sj′(σ(δ)) include at most unique

element db(x̂j′) and da(x̂i′) respectively.

We now need to verify condition N for i′ and j′. Suppose i′ has been dropped in

step t′ and j′ in step t′ + 1. In step t′ of the algorithm, Pt′ = {1, . . . , i′} ∪ {j′, . . . , n},
rt′,b =

∑i′

k=1 rk and rt′,a =
∑n

k=j′ rk and i′ can be dropped only if rt′,b ≤ rt′,a. This implies

x̂i′ = xi′ + 2δrt′,a(xm − xi′)

x̂j′ = xj′ + 2δ(rt′,b − ri′)(xm − xj′)
(A16)

which gives db(x̂j′) = xi′ + 2δ(rt′,b − ri′)(xm − xi′) from d(xi′) = d(xj′) ⇔ (xm − xi′) =

−(xm − xj′). Because xi′ ≤ db(x̂j′) < x̂i′ , it is easy to see that da(x̂i′) < x̂j′ ≤ xj′ . If

x̂j′ = xj′ , Si′(σ(δ)) = Sj′(σ(δ)) = ∅ so that condition S and hence N holds for i′ and j′.

Suppose x̂j′ < xj′ . Then Si′(σ(δ)) = {db(x̂j′)} and Sj′(σ(δ)) = ∅ and we need to verify

condition N for i′. Denote

z0 =xi′ + 2δrt′,a(xm − xi′)

z1 =xi′ + 2δ(rt′,b − ri′)(xm − xi′)

z2 =xi′ + 2δ(rt′,a − rj′)(xm − xi′)

z3 =xi′

and note that z0 = x̂i′ and z1 = db(x̂j′). From definitions of rnc,a and rnc,b, rnc,a(x|σ(δ)) =

rt′,a for ∀x ∈ (z1, z0), rnc,a(x|σ(δ)) = rt′,a−rj′ for ∀x ∈ (z3, z1) and rnc,b(x|σ(δ)) = rt′,b−ri′
for ∀x ∈ (z3, z1) ∪ (z1, z0).

To verify condition N for i′, we first verify condition S, which suffices for N, and only

when it fails we directly verify N. From Si′(σ(δ)) = {db(x̂j′)}, condition S for i′ writes

db(x̂j′)− xi′ − 2δ(rt′,a − rj′)(xm − xi′) ≤ 0 (A17)

which is equivalent to 2δ(xm−xi′)(rt′,b−rt′,a+rj′−ri′) ≤ 0. The condition holds if rj′ ≤ ri′

because rt′,b ≤ rt′,a and xm−xi′ > 0. Assume rj′ > ri′ and that condition S fails for i′, that

is rt′,b−rt′,a+rj′−ri′ > 0. Because rt′,a > rt′,b−ri′ , we have rt′,a > rt′,b−ri′ > rt′,a−rj′ ≥ 0

so that z0 > z1 > z2 ≥ z3. To verify condition N, Ni′(σ(δ)) = {z0, z1, z2, z3} when z2 > z3
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and Ni′(σ(δ)) = {z0, z1, z2} when z2 = z3 is easy to see from the definition of Ni. Direct

substitution of expressions for rnc,a and rnc,b into Ti′(x|σ(δ)) gives

Ti′(x|σ(δ)) = − 2
1−δ(rt′,a′+rt′,b−ri′ )

[
x2

2
− x · z0

]
if x ∈ (z1, z0)

Ti′(x|σ(δ)) = − 2
1−δ(rt′,a′+rt′,b−ri′−rj′ )

[
x2

2
− x · z2

]
if x ∈ (z3, z1).

(A18)

Condition N writes
∑J

j=1 Ti′(z
−
j−1|σ(δ)) − Ti′(z+j |σ(δ)) ≥ 0 for J ∈ {1, 2, 3} when z2 > z3

and J ∈ {1, 2} when z2 = z3. Each of the (at most) three terms in the condition rewrites

Ti′(z
−
0 |σ(δ))− Ti′(z+1 |σ(δ)) =

(z0 − z1)2

1− δ(rt′,a + rt′,b − ri′)

Ti′(z
−
1 |σ(δ))− Ti′(z+2 |σ(δ)) =

−(z1 − z2)2

1− δ(rt′,a + rt′,b − ri′ − rj′)

Ti′(z
−
2 |σ(δ))− Ti′(z+3 |σ(δ)) =

(z2 − z3)2

1− δ(rt′,a + rt′,b − ri′ − rj′)

(A19)

When z2 > z3, the first and the third term are clearly positive. Condition N thus holds if

Ti′(z
−
0 |σ(δ))− Ti′(z+1 |σ(δ)) + Ti′(z

−
1 |σ(δ))− Ti′(z+2 |σ(δ)) ≥ 0. The same condition applies

when z2 = z3 as the first term is positive and the third term is not part of condition N.

Dropping positive constants, the condition writes

(rt′,a − rt′,b + ri′)
2

1− δ(rt′,a + rt′,b − ri′)
− (rt′,b − rt′,a − ri′ + rj′)

2

1− δ(rt′,a + rt′,b − ri′ − rj′)
≥ 0. (A20)

The denominator of the first term is smaller than the denominator of the second one, so

the condition holds if

(rt′,a − rt′,b + ri′)
2 − (rt′,b − rt′,a − ri′ + rj′)

2 ≥ 0 (A21)

or ri′ + rt′,a − rt′,b ≥
rj′

2
. Because rt′,a ≥ rt′,b, ri′ ≥

rj′

2
suffices for N to hold for player i′.

To finish the proof, we know that if ri′ ≥
rj′

2
, then condition N holds for i′ and j′ if

rt′,a ≥ rt′,b. For rt′,a ≤ rt′,b, symmetric argument would lead to rj′ ≥ ri′
2

, or ri′ ≤ 2rj′ .

These two conditions jointly require ri′ ∈ [
rj′

2
, 2rj′ ]. Finally, we assumed that {i′, j′} is

pair of players with the largest i′ among the pairs of player with d(xi) = d(xj). The

proof can now proceed to a pair of players {i′′, j′′} such that d(xi′′) = d(xj′′) and i′′ < i′.

Identical argument gives ri′′ ∈ [
rj′′

2
, 2rj′′ ] and considering any further pair of players with

d(xi) = d(xj) leads to the very same condition. �
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A1.9 Proof of Lemma 6

To prove part 1, that G1 implies G2 when ri ≤ ri+1 for ∀i ∈ {1, . . . , n−3
2
}, we have for

∀i ∈ {1, . . . , n−3
2
} and ∀j ∈ {1, . . . , i}

1− 2δrej−1
1− 2δrej

1

≤ 1− 2δrei
1− 2δrei+1

2

≤ xm − xi
xm − xi+1

3

≤ xm − xj
xm − xi+1

. (A22)

2

≤ is condition G1.
3

≤ follows from
xm−xj
xm−xi+1

decreasing in j. To see
1

≤, note that
1−2δrei−1

1−2δrei
≤

1−2δrei
1−2δrei+1

holds for ∀i ∈ {1, . . . , n−3
2
}. It rewrites as (ri+1 − ri)(1− 2δrei ) + 2δriri+1 ≥ 0 for

i ∈ {1, . . . , n−3
2
} and clearly holds when ri ≤ ri+1 for ∀i ∈ {1, . . . , n−3

2
}. Subsequently

1

≤
must hold for any j ∈ {1, . . . , i}. The outer inequality in (A22) is condition G2.

To prove part 2, that G1 implies G2 when xi − xi−1 ≤ xi+1 − xi for ∀i ∈ {2, . . . , n−3
2
}

and 1
1−2δr1 ≤

xm−x1
xm−x2 , we have for ∀j ∈ {2, . . . , n−3

2
} and ∀i ∈ {j, . . . , n−3

2
}

1− 2δrej−1
1− 2δrej

1

≤ xm − xj−1
xm − xj

2

≤ xm − xj
xm − xj+1

3

≤ xm − xj
xm − xi+1

. (A23)

1

≤ is condition G1.
3

≤ follows from
xm−xj
xm−xi+1

increasing in i. To see
2

≤, note that xm−xi−1

xm−xi ≤
xm−xi
xm−xi+1

holds for ∀i ∈ {2, . . . , n−3
2
}. It rewrites as (xm− xi)(di+1− di) + di+1di ≥ 0 for i ∈

{2, . . . , n−3
2
} where di = xi−xi−1 and clearly holds when xi+1−xi = di+1 ≥ di = xi−xi−1.

The outer equality in (A23) is condition G2 except when j = 1 and i ∈ {1, . . . , n−3
2
}. For

these values of j and i, G2 reads 1
1−2δr1 ≤

xm−x1
xm−xi+1

and holds by the virtue of 1
1−2δr1 ≤

xm−x1
xm−x2

and the fact that the right hand side of the inequality is increasing in i. �

A1.10 Proof of Proposition 5

When δ = 0 in part 1 clearly x̂ = x so assume δ ∈ (0, 1). To show that there exist

2(n−1)/2 distinct sets of x̂ Algorithm 1 produces in a pairwise path and that any of these

constitutes an SMPE, we first show that any x̂ produced has a special structure. Recall

that the algorithm starts with step 0 in which it drops player m and that it finishes in

n−1 steps. We want to show that, for any pairwise moderation inducing G, the algorithm

in every odd step t ∈ {1, 3, . . . , n − 2} gives an option to drop players {m − t′,m + t′}
where t′ = t+1

2
. Dropping one of the players we want the other player to be dropped in

the subsequent step t+ 1. This implies that in any odd step t, the number of players still

in the algorithm is even and half come from Na while the other half come from Nb.

Suppose the algorithm exhibited such behaviour in all steps until step t ∈ {1, 3, . . . , n−
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4} and hence already dropped players {m − t′ + 1, . . . ,m + t′ − 1}. In t, the algorithm

computes x̂i,t = xi + 2δrem−t′(xm − xi) for all players still in the algorithm and gives an

option to drop players {m−t′,m+t′}. Assume, without loss of generality, that m+t′ ∈ Na

is dropped. Then in t+ 1, the algorithm computes, for the retained players,

x̂i,t+1 = xi + 2δrem−t′(xm − xi) if i ∈ Na

x̂i,t+1 = xi + 2δrem−t′−1(xm − xi) if i ∈ Nb.
(A24)

The algorithm at this point drops the player with x̂i,t+1 closest to xm. There are two

possible candidates, m − t′ ∈ Nb not dropped in t and m + t′ + 1 ∈ Na. We want the

algorithm to drop m−t′.40 This will be the case whenever xm−x̂m−t′,t+1 ≤ x̂m+t′+1,t+1−xm.

This inequality rewrites as

1− 2δrem−t′−1
1− 2δrem−t′

≤ xm − xm−t′−1
xm − xm−t′

(A25)

where we have already used xm+t′+1−xm = xm−xm−t′−1, which follows from the symmetry

of G. Setting i = m − t′ − 1 and using t ∈ {1, 3, . . . , n − 4}, we have i ∈ {1, . . . , n−3
2
}.

(A25) is thus equivalent to condition G1. The pairwise path through the algorithm from

Definition 8 then ensures that the desired structure of x̂ arises even when (A25) holds

with equality. As there are n−1
2

odd steps in the algorithm, each giving an option to drop

one of two players, the multiplicity of x̂ evaluates at 2(n−1)/2.

To see that any x̂ produced constitutes an SMPE, we will show that it satisfies condition

S when G induces pairwise moderation. Fix x̂ from Algorithm 1 produced for pairwise

moderation inducing G and induced σ. Take player i ∈ {1, . . . , n−1
2
} = Nb. For players

in Na the argument is symmetric and omitted. Suppose the algorithm dropped player i

producing x̂i. The set of players dropped subsequently is {1, . . . , i − 1} ∪ {dIa(i), . . . , n}.
Only these players can produce points in ND(σ) in the interval [xi, x̂i], that is points

defining Si(σ) = ND(σ) ∩ (xi, x̂i) used in condition S. Furthermore, from (A6) we know

that for any j′ ∈ Nb and i ∈ Nb, sgn [U ′i(x̂
−
j |σ)] = sgn [U ′i(x̂

+
j |σ)], so we will concern

ourselves only with checking condition S for those points in Si(σ) induced by players

j ∈ {dIa(i), . . . , n} being dropped by Algorithm 1. If condition S holds for these points, it

must hold for all points in Si(σ).

For any j ∈ {dIa(i), . . . , n} Algorithm 1, by pairwise moderation, produces either x̂j =

xj + 2δre
dIb(j)

(xm − xj) or x̂j = xj + 2δre
dIb(j)−1

(xm − xj). By the symmetry of G we can

40 No condition is necessary for the final odd step, n − 2, which is followed by the final step of the
algorithm with only one player remaining.
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map x̂j below xm into db(x̂j) = xj′ + 2δrej′(xm− xj′) or db(x̂j) = xj′ + 2δrej′−1(xm− xj′) for

j′ = dIb(j) ∈ {1, . . . , i}. Condition S evaluated for i ∈ Nb and db(x̂j) becomes

xj′ + 2δrej′(xm − xj′)− xi − 2δrej′−1(xm − xi) ≤ 0

xj′ + 2δrej′−1(xm − xj′)− xi − 2δrej′−1(xm − xi) ≤ 0
(A26)

where we used rnc,a(db(x̂j)
−|σ) = rej′−1; when j is dropped by the algorithm, j′− 1 players

in Na remain on the non-constant part of their strategy as we approach db(x̂j) from below.

When j′ = i, i must have been dropped by Algorithm 1 first out of pair {i, dIa(i)} of

players. This implies db(x̂j) = xj′ + 2δrej′−1(xm−xj′) so that only the second line of (A26)

applies and the left hand side equals 0. When j′ < i both lines of (A26) apply but from

rej′(xm − xj′) > rej′−1(xm − xj′), if the first line holds the second one must hold as well.

The first line rewrites as
1− 2δrej′−1
1− 2δrej′

≤ xm − xj′
xm − xi

(A27)

and needs to hold for i ∈ {2, . . . , n−1
2
} and j′ ∈ {1, . . . , i − 1}, where we have already

adjusted for the fact that we only need to take care of cases when i > j′. Rewriting the

condition as
1− 2δrej−1
1− 2δrej

≤ xm − xj
xm − xi+1

(A28)

for ∀i ∈ {1, . . . , n−3
2
} and ∀j ∈ {1, . . . , i}, we get condition G2.

To summarize, when G induces pairwise moderation, conditions G1 and G2 hold by

Definition 7. Condition G1 implies that any x̂ produced by a pairwise path through

Algorithm 1 has a special structure that allowed us to use condition G2 to show that

condition S holds, which by Proposition 3 implies that σ induced by x̂ constitutes an

SMPE.

What remains is to show that Ui is single peaked on X for ∀i ∈ N . For m we already

know the claim is true by Lemma 2 part 5. Consider i ∈ Na omitting again the symmetric

argument for players in Nb. By condition S, Ui is single peaked for x ≥ xm. For x ≤ xm

and any x ∈ D(σ), from (A6) we need x − xi − 2δrnc,a(x|σ)(xm − xi) ≤ 0. This follows

from x ≤ xm and 1− 2δrnc,a(x|σ) > 0 as rnc,a(x|σ) ≤ 1
2

for any symmetric G. �

A1.11 Proof of Proposition 6

Fix x̂ produced by a pairwise path through Algorithm 1. Denote by ti for ∀i ∈ N step of

the algorithm at which i has been dropped. Note that ti is decreasing in i for i ∈ Nb∪{m}
and increasing in i for i ∈ Na ∪ {m}. We construct the perturbation of x by ε > 0, x(ε),
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the proposition postulates as

x(ε) = {x1 + ε
t1
, . . . , xm−1 + ε

tm−1
, xm, xm+1 − ε

tm+1
, . . . , xn − ε

tn
} (A29)

where limε→0 x(ε) = x is immediate. Note also that there exists ε̄ such that, for ∀ε ≤ ε̄,

xm−1(ε) < xm < xm+1(ε) and hence xi(ε) < xi+1(ε) for ∀i ∈ N \ {n}.
We now show that Algorithm 1 for G(ε) = 〈n,x(ε), r, δ,X〉 produces unique x̂(ε) and

that the order in which players are dropped during construction of x̂(ε) and x̂ is the same.

Recall that, when producing x̂, Algorithm 1 in step t ∈ {1, 3, . . . , n − 2} dropped one of

players from {m − t′,m + t′} where t′ = t+1
2

and the other player in step t + 1. We need

to show the algorithm (uniquely) mimics this behaviour when constructing x̂(ε).

Assume the algorithm has done so until step t ∈ {1, 3, . . . , n − 2} and hence has

already dropped players {m− t′+1, . . . ,m+ t′−1}. In t, the algorithm computes x̂i,t(ε) =

xi + 2δrem−t′(xm − xi) + ε
ti

(1− 2δrem−t′) for ∀i ∈ Nb and x̂i,t(ε) = xi + 2δrem−t′(xm − xi)−
ε
ti

(1 − 2δrem−t′) for ∀i ∈ Na. Only players m − t′ ∈ Nb or m + t′ ∈ Na can be dropped in

t and we need to show the former is dropped if tm−t′ < tm+t′ and the latter is dropped if

tm−t′ > tm+t′ . Calculating d(x̂m−t′,t(ε)) and d(x̂m+t′,t(ε)),

d(x̂m−t′,t(ε)) = d(xm−t′)(1− 2δrem−t′)− ε
tm−t′

(1− 2δrem−t′)

d(x̂m+t′,t(ε)) = d(xm+t′)(1− 2δrem−t′)− ε
tm+t′

(1− 2δrem−t′).
(A30)

Because d(xm−t′) = d(xm+t′) and 1−2δrem−t′ > 0, tm+t′ < tm−t′ implies required d(x̂m+t′,t(ε)) <

d(x̂m−t′,t(ε)) and tm+t′ > tm−t′ implies required d(x̂m+t′,t(ε)) > d(x̂m−t′,t(ε)).

We now show that from the pair of players {m− t′,m+ t′}, the one not dropped in step

t is uniquely dropped in step t + 1. Assume, without loss of generality, that m + t′ ∈ Na

is dropped in step t. In step t+ 1 the algorithm computes, for the retained players,

x̂i,t+1(ε) = xi + 2δrem−t′−1(xm − xi) + ε
ti

(1− 2δrem−t′−1) if i ∈ Nb

x̂i,t+1(ε) = xi + 2δrem−t′(xm − xi)− ε
ti

(1− 2δrem−t′) if i ∈ Na.

which, for the pair of players {m− t′,m+ t′ + 1} that can be dropped, gives

d(x̂m−t′,t+1(ε)) = d(xm−t′)(1− 2δrem−t′−1)− ε
tm−t′

(1− 2δrem−t′−1)

d(x̂m+t′+1,t+1(ε)) = d(xm+t′+1)(1− 2δrem−t′)− ε
tm+t′+1

(1− 2δrem−t′).

We know d(xm−t′)(1 − 2δrem−t′−1) ≤ d(xm+t′+1)(1 − 2δrem−t′) because G induces pairwise

moderation. To show d(x̂m−t′,t+1(ε)) < d(x̂m+t′+1,t+1(ε)), it thus suffices to show that
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1−2δre
m−t′−1

tm−t′
>

1−2δre
m−t′

tm+t′+1
, which follows from tm−t′ < tm+t′+1 and rem−t′−1 < rem−t′ .

Because Algorithm 1, when constructing x̂ and x̂(ε), dropped players in the identical

order, we have, for any i ∈ Na, x̂i = xi + 2δr′(xm − xi) and x̂i(ε) = xi + 2δr′(xm −
xi) − ε

ti
(1 − 2δr′), where r′ is the probability the algorithm used in step ti. Clearly

limε→0 x̂i(ε) = x̂i for ∀i ∈ Na. Using a similar argument for i ∈ Nb and noting x̂m = x̂m(ε)

shows limε→0 x̂(ε) = x̂.

To show that x̂(ε) satisfies condition S, take player i ∈ {1, . . . , n−1
2
} = Nb. For players

in Na the argument is symmetric and omitted. The set of players subsequently dropped

is {1, . . . , i − 1} ∪ {dIa(i), . . . , n}. Using a similar argument as in the proof of Proposi-

tion 5, when x̂(ε) induces σ(ε), we only need to check condition S for those points in

Si(σ(ε)) induced by players j ∈ {dIa(i), . . . , n} being dropped by Algorithm 1. For any

j ∈ {dIa(i), . . . , n} Algorithm 1 produces either x̂j(ε) = xj+2δre
dIb(j)

(xm−xj)− ε
tj

(1−2δre
dIb(j)

)

or x̂j(ε) = xj + 2δre
dIb(j)−1

(xm − xj) − ε
tj

(1 − 2δre
dIb(j)−1

). Mapping x̂j(ε) below xm and

using j′ = dIb(j) gives db(x̂j(ε)) = xj′ + 2δrej′(xm − xj′) + ε
tj

(1 − 2δrej′) or db(x̂j(ε)) =

xj′ + 2δrej′−1(xm − xj′) − ε
tj

(1 − 2δrej′−1). Condition S evaluated for i ∈ Nb and db(x̂j(ε))

becomes
xj′ + 2δrej′(xm − xj′)− xi − 2δrej′−1(xm − xi) +

ε
[
1−2δre

j′

tj
−

1−2δre
j′−1

ti

]
≤ 0

xj′ + 2δrej′−1(xm − xj′)− xi − 2δrej′−1(xm − xi) +

ε
[
1−2δre

j′−1

tj
−

1−2δre
j′−1

ti

]
≤ 0

(A31)

and we know, since G induces pairwise moderation, that it holds for ∀i ∈ {1, . . . , n−1
2
} and

∀j′ ∈ {1, . . . , i} when ε = 0. Noting that ti < tj and rej′−1 < rej′ , each of the terms in the

square brackets in the condition is non-positive, showing that condition S holds for x̂(ε)

as well. �

A1.12 Proof of Proposition 7

Throughout the proof assume G is strongly symmetric with n ≥ 5 and δ ≥ n
n+1

. Algorithm

1 in step 0 sets x̂m = xm and in step 1 gives an option to drop one of the players in

{m− 1,m+ 1}. For these two players

x̂m−1,1 = xm−1 + 2δ n−1
2

1
n
(xm − xm−1)

x̂m+1,1 = xm+1 + 2δ n−1
2

1
n
(xm − xm+1)

(A32)
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and d(x̂m−1,1) = d(x̂m+1,1) follows from the strong symmetry of G. Assume the algorithm

drops m− 1. The argument for m+ 1 is symmetric and omitted.

We claim the algorithm in steps t ∈ {2, . . . , n−1
2
} drops all the remaining players

from Nb. Suppose the algorithm has been dropping players from Nb until step t − 1 ∈
{1, . . . , n−3

2
}. We need to show that it drops the player from Nb in step t ∈ {2, . . . , n−1

2
}.

From Pt = Na ∪ {1, . . . , i′} where i′ = n+1
2
− t, rt,a = n−1

2
1
n

and rt,b = i′ 1
n
. Since only

players in {i′,m+ 1} can be dropped, we need to show d(x̂m+1,t) ≥ d(x̂i′,t) for

x̂m+1,t = xm+1 + 2δ i
′

n
(xm − xm+1)

x̂i′,t = xi′ + 2δ n−1
2n

(xm − xi′)
(A33)

for ∀i′ ∈ {1, . . . , n−3
2
}. Denoting xi−xi+1 = l > 0 for ∀i ∈ N \ {n}, d(x̂m+1,t) = l(1− 2δ i

′

n
)

and d(x̂i′,t) = (n+1
2
− i′)l(1 − δ n−1

n
) so that d(x̂m+1,t) ≥ d(x̂i′,t) is equivalent to δ ≥ n

n+1
.

When δ = n
n+1

, the algorithm gives an option to drop i′ or m+1 and we assume the former

player is dropped. When δ > n
n+1

the algorithm uniquely selects player i′ to drop.

Because the algorithm drops all players from Nb in steps t ∈ {1, . . . , n−1
2
}, in steps

t ∈ {n−1
2

+ 1, . . . , n − 1} it drops all players from Na. The resulting x̂ thus satisfies

x̂m = xm, x̂i = xi for ∀i ∈ Na and x̂i = xi + δ n−1
n

(xm − xi) for ∀i ∈ Nb. To finish

the proof of part 1, what remains is to show that d(x̂i) ∈ (0, d(xm−1)) for ∀i ∈ Nb.

Because d(x̂i) = d(xi)(1 − δ n−1n ), d(x̂i) > 0 for ∀i ∈ Nb is immediate. To show d(x̂i) <

d(xm−1) = d(xm+1), it suffices to show d(x̂1) < d(xm+1) since d(x̂i) ≤ d(x̂1) for ∀i ∈ Nb.

d(x̂1) < d(xm+1) then follows from the fact that in step n−1
2

the algorithm dropped player

1 due to d(x̂1,n−1
2

) ≤ d(x̂m+1,n−1
2

) < d(xm+1).

Fix x̂ with x̂m = xm, x̂i = xi for ∀i ∈ Na and x̂i = xi+δ
n−1
n

(xm−xi) for ∀i ∈ Nb and σ it

induces. By the strong symmetry of G we haveND(σ) = {x1, . . . , xm−1, x̂1, . . . , x̂m−1, xm, . . .}
and from definitions rnc,a(x|σ) = j

n
and rnc,b(x|σ) = 0 for ∀x ∈ (xj, xj+1) where j ∈

{1, . . . , n−3
2
}. Furthermore, rnc,a(x|σ) = n−1

2n
for ∀x ∈ (xm−1, xm) \ ND(σ). To prove part

2, we need to show σ constitutes an SMPE.

For players in Na ∪ {m}, the optimality of their strategies is easy to see; xm is clearly

optimal for m and for any i ∈ Na, Si(σ) = ∅ follows from xi = x̂i and hence condition S
holds for any i ∈ Na. Because condition S in general fails for players in Nb, we need to

check condition N for these players.

We now argue that it suffices to check condition N for player 1. To see this we first

claim that Ui(x̂1|σ) ≤ Ui(x̂i|σ) for ∀i ∈ Nb. The claim follows from the piecewise strict

concavity of Ui proven in Lemma 2 part 4, x̂i < x̂i+1 for ∀i ∈ Nb, U
′
i(x̂

+
i |σ) = U ′i(x̂

−
i |σ) = 0

for ∀i ∈ Nb, which follows from the way Algorithm 1 constructs x̂i, and sgn [U ′i(x̂
+
j |σ)] =
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sgn [U ′i(x̂
−
j |σ)] for ∀i ∈ Nb and ∀j ∈ Nb, which follows from rnc,a(x|σ) = n−1

2n
for ∀x ∈

(xm−1, xm) \ ND(σ) and inspection of (A6). Suppose now that condition N holds for

player 1. This means U1(x|σ) ≤ U1(x̂1|σ) for ∀x ≤ x̂1. From Lemma 2 part 5 and x̂1 < xm

we know Um(x|σ) ≤ Um(x̂1|σ) for ∀x ≤ x̂1. Using an argument similar to the one used to

prove Proposition 1, we thus have Ui(x|σ) ≤ Ui(x̂1|σ) for ∀x ≤ x̂1 and ∀i ∈ Nb, or, using

the claim above, Ui(x|σ) ≤ Ui(x̂1|σ) ≤ Ui(x̂i|σ). Thus, if condition N holds for player 1 it

must hold for all players in Nb.

What remains is to show that condition N holds for player 1. The set of points in

[x1, x̂1] at which U1 is not differentiable is {x1, x2, . . . , xm−1, x̂1}. We first show that, for

j ∈ {1, . . . , n−3
2
}, U1 has a unique local maximizer on (xj, xj+1), which we denote by x′j.

Using rnc,a(x|σ) = j
n

and rnc,b(x|σ) = 0 for ∀x ∈ (xj, xj+1) and ∀j ∈ {1, . . . , n−3
2
} in (A6)

gives

U ′1(x|σ) = − 2

1− δ j
n

[
x− x1 − 2δ j

n
(xm − x1)

]
. (A34)

x′j = x1 + 2δ j
n
(xm − x1) is the local maximizer of U1 if x′j ∈ (xj, xj+1). We will show that

this is the case for ∀j ∈ {1, . . . , n−3
2
}. Noting x1 = xm − n−1

2
l and xj = xm − (n+1

2
− j)l,

straightforward algebra shows x′j < xj+1 ⇔ δ < n
n−1 and xj < x′j ⇔ δ > n

n−1
j−1
j

. The

first inequality clearly holds. The right hand side of the second inequality is increasing

in j so it must hold for any j if it holds for j = n−3
2

. Evaluation gives δ > n
n−1

n−5
n−3

and because, as is easily checked, n
n+1

> n
n−1

n−5
n−3 , shows that the inequality holds. We

thus have N1(σ) = {x1, x′1, x2, x′2, . . . , xm−2, x′m−2, xm−1, x̂1}. We now make two claims

that jointly imply that in order to check condition N for player 1, it suffices to ensure

U1(x
′
m−2|σ) ≤ U1(x̂1|σ), that is, to check condition N only for J = 2.

First, we claim that
xj+xj+1

2
≤ x′j for ∀j ∈ {1, . . . , n−3

2
}. The condition rewrites as δ ≥

n
n−1

j− 1
2

j
, its right hand side is increasing in j and evaluated at j = n−3

2
reads δ ≥ n

n−1
n−4
n−3 .

Below we will show that δ ≥ n
n−1

n−4
n−3 indeed holds when δ ≥ δ̄(n).

Second, we claim that U ′1(x|σ) > U ′1(x+ l|σ) for ∀x ∈ (xj, xj+1) and ∀j ∈ {1, . . . , n−5
2
}.

Using (A34) the condition is

−
2
[
x− x1 − 2δ j

n
(xm − x1)

]
1− δ j

n

> −
2
[
x+ l − x1 − 2δ j+1

n
(xm − x1)

]
1− δ j+1

n

(A35)

and rewrites as d(x) + d(x1) < l(n
δ
− j). Because d(x) ≤ (n+1

2
− j)l and d(x1) = n−1

2
l,

d(x) + d(x1) ≤ (n− j)l, so the inequality holds.
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From the second claim, for ∀j ∈ {1, . . . , n−5
2
} and any y ∈ [xj, xj+1],

U1(xj+1|σ)− U1(y|σ) =

∫ xj+1

y

U ′1(z|σ)dz

≥
∫ xj+1

y

U ′1(z + l|σ)dz

=

∫ xj+2

y+l

U ′1(w|σ)dw

= U1(xj+2|σ)− U1(y + l|σ).

(A36)

From the first claim, for ∀j ∈ {1, . . . , n−3
2
}, because U1 is quadratic on (xj, xj+1) and hence

symmetric about x′j ≥
xj+xj+1

2
, U1(xj|σ) ≤ U1(xj+1|σ). Combining the inequalities we get

0 ≥ U1(xj+1|σ)− U1(xj+2|σ) ≥ U1(y|σ)− U1(y + l|σ) (A37)

so that U1(y+l|σ) ≥ U1(y|σ) for ∀y ∈ [xj, xj+1] and ∀j ∈ {1, . . . , n−5
2
}. Since U1(x

′
m−2|σ) ≥

U1(y|σ) for ∀y ∈ [xm−2, xm−1] and y + l ∈ [xm−2, xm−1] when y ∈ [xm−3, xm−2], it must be

the case that U1(x
′
m−2|σ) ≥ U1(y|σ) for ∀y ∈ [x1, xm−1]. Hence, if we prove U1(x

′
m−2|σ) ≤

U1(x̂1|σ), we can conclude that U1(x|σ) ≤ U1(x̂1|σ) for ∀x ∈ N1(σ), that is, that condition

N holds for player 1.

To prove U1(x
′
m−2|σ) ≤ U1(x̂1|σ), we evaluate condition N for J = 2. For x ∈

(xm−1, x̂1), c1(x|σ) = x̂1 and T1(x|σ) = − 2
1−δ n−1

2n

[
x2

2
− c1(x|σ)x

]
. For x ∈ (xm−2, xm−1),

c1(x|σ) = x′m−2 and T1(x|σ) = − 2
1−δ n−3

2n

[
x2

2
− c1(x|σ)x

]
. Substitution into the condition

gives [
T1(x|σ)

]x̂−1
x+m−1

=
1

1− δ n−1
2n

(x̂1 − xm−1)2[
T1(x|σ)

]x−m−1

x′+m−2

= − 1

1− δ n−3
2n

(xm−1 − x′m−2)2
(A38)

and x̂1−xm−1 = −l(n−3
2
− 2δ n−1

2n
n−1
2

), x′m−2−xm−1 = −l(n−3
2
− 2δ n−3

2n
n−1
2

). The condition

reads
[
T1(x|σ)

]x̂−1
x+m−1

+
[
T1(x|σ)

]x−m−1

x′+m−2

≥ 0, which after some algebra rewrites as δ ≥ δ′(n) =

n
n−3

[
2n−2
n−1 −

√
n3−n2−n−7

(n−1)3

]
. Checking that 1 > δ′(n) > n

n−1
n−4
n−3 for ∀n ≥ 5 is routine

algebra. The proposition claims the first inequality and we required δ ≥ n
n−1

n−4
n−3 above.

Because δ′(n) < n
n+1

holds if and only if n = 5, δ ≥ δ̄(n) = max { n
n+1

, δ′(n)} guarantees

that condition N holds for all players in Nb and hence σ constitutes an SMPE. �
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A1.13 Proof of Proposition 8

Throughout the proof assume G is strongly symmetric with n = 5 and δ > n
n+1

or with

n ≥ 7 and δ ≥ δ̄(n).41 From Proposition 7, there exist two x̂ from Algorithm 1 with x̂i = xi

for ∀i ∈ Ng ∪ {m} and x̂i = xi + δ n−1
n

(xm− xi) for ∀i ∈ N \ (Ng ∪ {m}), where g ∈ {a, b}.
From the proof of that proposition, there exists no other x̂ produced by Algorithm 1.

Fix x̂ with g = a, that is x̂ with x̂i = xi for ∀i ∈ Na∪{m} and x̂i = xi+ δ n−1
n

(xm−xi)
for ∀i ∈ Nb. For the other profile the argument is similar and omitted. We construct the

perturbation of x by ε > 0, x(ε), the proposition postulates as

x(ε) = {x1, . . . , xm−2, xm−1 + ε, xm, xm+1, xm+2, . . . , xn} (A39)

where limε→0 x(ε) = x is immediate.42 Clearly, there exists ε̄ such that, for ∀ε ≤ ε̄,

xm−1(ε) < xm.

We now show that Algorithm 1 for G = 〈n,x(ε), r, δ,X〉 produces a unique x̂(ε) with

x̂m−1(ε) = xm−1 + δ n−1
n

(xm− xm−1) + ε(1− δ n−1
n

) and x̂i(ε) = x̂i for ∀i ∈ N \ {m− 1}. In

step 1, the algorithm calculates, for the players in {m− 1,m+ 1} that can in principle be

dropped,

x̂m−1,1(ε) = xm−1 + δ n−1
n

(xm − xm−1) + ε(1− δ n−1
n

)

x̂m+1,1(ε) = xm+1 + δ n−1
n

(xm − xm+1).
(A40)

Because d(xm−1) = d(xm+1), m − 1 is dropped with x̂m−1(ε) = x̂m−1,1(ε). From the

arguments presented in the proof of Proposition 7, it follows that the algorithm uniquely

drops all the remaining players from Nb in steps t ∈ {2, . . . , n−1
2
} and all the players

from Na in steps t ∈ {n−1
2

+ 1, . . . , n − 1}. This implies x̂i(ε) = xi + δ n−1
n

(xm − xi) for

∀i ∈ Nb \ {m − 1} and x̂i(ε) = xi for ∀i ∈ Na. Clearly, x̂i(ε) = x̂i for ∀i ∈ N \ {m − 1}
and since limε→0 x̂m−1(ε) = x̂m−1, limε→0 x̂(ε) = x̂.

What remains is to show that x̂(ε) induces σ(ε) that supports SMPE. The argument

is essentially identical to the one used to prove Proposition 7 and for space consideration

we include here only the key steps. For any i ∈ Na condition S holds as Si(σ(ε)) = ∅
and xm is optimal for m. That Ui(x̂1(ε)|σ(ε)) ≤ Ui(x̂i(ε)|σ(ε)) for ∀i ∈ Nb follows by the

same argument as in the proof of proposition 7 and hence condition N only needs to hold

41 The perturbation of x we are about to construct is extremely simple when δ > n
n+1 as Algorithm

1 produces exactly two x̂ for the unperturbed x, giving an option regarding which player to drop only
in the first step. When δ = n

n+1 , we would have to construct more complex perturbation of x. Since

δ ≥ δ̄(n), which we need to show that condition N holds, implies δ > n
n+1 for any n ≥ 7, for n = 5 we

assume δ > n
n+1 .

42 The perturbation required for x̂ from Proposition 7 with g = b would be identical except for xm−1(ε) =
xm−1 and xm+1(ε) = xm − ε.
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for player 1 for σ(ε) to support SMPE. That the condition indeed holds when δ ≥ δ̄(n)

follows again by the argument used in the proof of Proposition 7. The entire argument

there relied only on the derivative of U1 and it is easy to see that U ′1(x|σ(ε)) = U ′1(x|σ),

where σ is induced by x̂, for ∀x ∈ [x1, x̂1] \ ND(σ) = [x1(ε), x̂1(ε)] \ ND(σ(ε)). �

A1.14 Proof of Proposition 9

Take G that induces pairwise moderation. From the proof of Proposition 5, we know that

for any pair of players {i, i′} with i ∈ {1, . . . , n−1
2
} and i′ = dIa(i), a pairwise path through

Algorithm 1 produces one of the following pairs of SMPE strategic bliss points

(x̂i, x̂i′) = (xi + 2δrei−1(xm − xi), xi′ + 2δrei (xm − xi′))

(x̂′i, x̂
′
i′) = (xi + 2δrei (xm − xi), xi′ + 2δrei−1(xm − xi′))

(A41)

and we have, by symmetry of G,

d(x̂i) = d(x̂′i′) = (xm − xi)(1− 2δrei−1)

d(x̂i′) = d(x̂′i) = (xm − xi)(1− 2δrei ).
(A42)

Denote the profile of strategic bliss points related to the first pair in (A41) by x̂ with

associated σ, and associate x̂′ and σ′ with the second pair. Assume x̂ and x̂′ differ only

in terms of the strategic bliss points of {i, i′} and note that because G is symmetric,

ri = ri′ . If, for some status-quo x, both i and i′ propose their strategic bliss points, we

have rid(x̂i) + ri′d(x̂i′) = rid(x̂′i) + ri′d(x̂′i′) and hence E[d(p(x|σ))] = E[d(p(x|σ′))]. The

same equality holds if x is such that i and i′ propose db(x) and da(x) respectively under

σ, they propose the same policies under σ′. If x is such that i and i′ propose db(x) and

x̂i′ respectively under σ, the only remaining case possible as d(x̂i) > d(x̂i′), they propose

x̂′i and da(x) under σ′ and we have rid(db(x)) + ri′d(x̂i′) = rid(x̂′i) + ri′d(da(x)). If x̂

and x̂′ differ in terms of other pairs of players, we repeat the same argument. Hence

E[d(p(x|σ))] = E[d(p(x|σ′))].
Finally, from d(x̂i) = d(xi)(1−2δrei−1) and d(x̂i′) = d(xi)(1−2δrei ), it is straightforward

that E[d(p(x|σ))] is non-increasing in δ and ri for i 6= m and non-decreasing in d(xi). �

A1.15 Proof of Proposition 10

Part 1 follows from the shape of the acceptance set A(x|σ) = [db(x), da(x)] for any status-

quo x ∈ X and any SMPE σ from Proposition 5. To see part 2, note that under the simple
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proposal strategies from Definition 4, every player i ∈ N for any status-quo x ∈ X proposes

either her strategic bliss point x̂i or policy in {db(x), da(x)}. The claim then follows from

d(x) = d(db(x)) = d(da(x)). For part 3, we have pi(x|σ) 6= xm for ∀i ∈ N \ {m} and

∀x ∈ X \ {xm}. Hence P[d(pt) > 0] is equal to the probability that, starting with status-

quo x 6= xm, m has not been recognized to propose in periods {0, 1, . . . , t}, which is

(1− rm)t+1. For part 4, as d(pt) is non-increasing in t for any path of proposer identities

(part 1), the number of players proposing, for status-quo pt−1, pt with d(pt) = d(pt−1) is

non-decreasing and so is the sum of their recognition probabilities. Finally, part 5 follows

from the fact that for any status-quo x 6= xm, all the players in Na propose policy strictly

above xm and all the players in Nb propose policy strictly below xm. �

A1.16 Proof of Proposition 11

To prove part 1, we need to consider several cases.

Case 1: When d(x1) = d(x3), Algorithm 1 produces a profile of strategic bliss points x̂

either with x̂1 = x1 and x̂3 = max {x2, x3 + 2δr1(x2 − x3)} or with x̂1 = min {x2, x1 + 2δr3(x2 − x1)}
and x̂3 = x3 (when r1 = r3 both are possible, when r1 6= r3 only one is). In either case

Si(σ) = ∅ for i ∈ {1, 3}, condition S holds and σ induced by x̂ constitutes an SMPE.

Case 2: When d(x1) 6= d(x3) and d(xe)(1 − 2δr−e) > d(x−e)(1 − 2δre), Algorithm 1

produces x̂ either with x̂e = xe and x̂−e = x−e + 2δre(xm − x−e) or with x̂e = xe and

x̂−e = xm (when δre <
1
2

the former applies and when δre ≥ 1
2

the latter applies). In either

case Si(σ) = ∅ for i ∈ {1, 3}, condition S holds and σ induced by x̂ constitutes an SMPE.

Case 3: When d(x1) 6= d(x3) and d(xe)(1 − 2δr−e) = d(x−e)(1 − 2δre), Algorithm 1

produces x̂, due to 1 − 2δri > 0 for i ∈ {1, 3} and implied δr−e <
1
2
, either with x̂e = xe

and x̂−e = x−e + 2δre(xm − x−e) or with x̂e = xe + 2δr−e(xm − xe) and x̂−e = x−e. In

the former case Si(σ) = ∅ for i ∈ {1, 3}, condition S holds and σ induced by x̂ constitutes

an SMPE.43 In the latter case, easy argument shows that condition S fails and we need

to check condition N for σ induced by x̂e = xe + 2δr−e(xm − xe) and x̂−e = x−e. Assume

that e = 3. The argument when e = 1 is symmetric and omitted. Because x̂1 = x1

and x̂3 = x3 + 2δr1(x2 − x3), we have S1(σ) = ∅ and N3(σ) = {x̂3, da(x1), x3}. That

da(x1) ∈ (x̂3, x3) follows from the conditions defining this case d(x3)(1−2δr1) = d(x1)(1−
2δr3) < d(x1) and d(x3) > d(x1) and L3(σ) ∩ (x̂3, x3) = ∅ follows from U ′3(x|σ) < 0 for

∀x ∈ (x̂3, da(x1)) and U ′3(x|σ) > 0 for ∀x ∈ (da(x1), x3). To evaluate condition N for player

3, we have T3(x|σ) = −2
1−δr1

[
x2

2
− x̂3x

]
for x ∈ (x̂3, da(x1)) and T3(x|σ) = −2

[
x2

2
− x3x

]
43 If case 3 applies and condition E fails, Proposition 12 part 2 obtains. That x̂e = xe with x̂−e =

x−e + 2δre(xm − x−e) constitutes an SMPE follows by Si(σ) = ∅ for i ∈ {1, 3}.
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for x ∈ (da(x1), x3). Condition N then rewrites as

−2

1− δr1

[
x2

2
− x̂3x

]x̂+3
da(x1)−

≥ 0

−2

1− δr1

[
x2

2
− x̂3x

]x̂+3
da(x1)−

− 2

[
x2

2
− x3x

]da(x1)+
x−3

≥ 0.

(A43)

The first inequality rewrites as 1
1−δr1 [d(x̂3) − d(x1)]

2 ≥ 0 and clearly holds. The second

inequality rewrites as 1
1−δr1 [d(x̂3) − d(x1)]

2 − [d(x1) − d(x3)]
2 ≥ 0, can be expressed as

condition Be for δr1 <
1
2

and hence holds.

Case 4: When d(x1) 6= d(x3) and d(xe)(1 − 2δr−e) < d(x−e)(1 − 2δre), Algorithm 1

produces x̂ either with x̂e = xe+2δr−e(xm−xe) and x̂−e = x−e or with x̂e = xm and x̂−e =

x−e (when δr−e <
1
2

the former applies and when δr−e ≥ 1
2

the latter applies). Condition S
fails in both cases and we need to check condition N for σ induced by x̂e and x̂−e. Assume

that e = 3. The argument when e = 1 is symmetric and omitted. Because x̂1 = x1

and x̂3 = max {x2, x3 + 2δr1(x2 − x3)}, we have S1(σ) = ∅ and N3(σ) = {x̂3, da(x1), x3}.
That da(x1) ∈ (x̂3, x3) follows from similar argument as in the previous case. To evaluate

condition N for player 3, when δr1 <
1
2
, we have the same expressions for T3(x|σ) as in the

previous case and condition N thus holds by similar argument. When δr1 ≥ 1
2
, T3(x|σ) =

−2
1−δr1

[
x2

2
− (x3 + 2δr1(x2 − x3))x

]
for x ∈ (x̂3, da(x1)) and T3(x|σ) = −2

[
x2

2
− x3x

]
for

x ∈ (da(x1), x3). Condition N rewrites as

[T3(x|σ)]
x+2
da(x1)−

≥ 0

[T3(x|σ)]
x+2
da(x1)−

+ [T3(x|σ)]
da(x1)+

x−3
≥ 0.

(A44)

The first inequality rewrites as d(x1)
1−δr1 [d(x1)− 2d(x3)(1− 2δr1)] ≥ 0 and clearly holds as

1− 2δr1 ≤ 0. The second inequality rewrites as

d(x1)

1− δr1
[d(x1)− 2d(x3)(1− 2δr1)]− [d(x1)− d(x3)]

2 ≥ 0, (A45)

can be expressed as condition Be for δr1 ≥ 1
2

and hence holds.

We leave proof of part 2, the existence of SMPE in adjusted simple proposal strategies,

for the proof of Proposition 12. There we deal with the adjusted simple strategies in full

detail (see footnote 45).

To prove part 3, we note that single-peakedness of U1 on {x ∈ X|x ≤ xm} and of U3

on {x ∈ X|x ≥ xm} obtains when condition S holds for both players for x̂ that induces
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SMPE σ. Reviewing the cases above, condition S holds in case 1 (d(x1) = d(x3)), case 2

(d(xe)(1− 2δr−e) > d(x−e)(1− 2δre)) and in case 3 (d(xe)(1− 2δr−e) = d(x−e)(1− 2δre))

when x̂e = xe, that is when the Algorithm 1 drops player −e in step 1. From (A6) we then

have single-peakedness of U1 and U3 on X when δr1 ≤ 1
2

and δr3 ≤ 1
2

respectively. �

A1.17 Proof of Proposition 12

We start by observing that we have already proved part 2 of the proposition as part

of the process of proving Proposition 11 (see footnote 43). What remains is part 1.

Since condition E fails, Ae holds and Be fails. Because Ae holds, d(x1) 6= d(x3) and

d(xe)(1− 2δr−e) ≤ d(x−e)(1− 2δre). Thus Algorithm 1 produces (dropping e in step 1, if

given an option) x̂ either with x̂e = xe + 2δr−e(xm − xe) and x̂−e = x−e or with x̂e = xm

and x̂−e = x−e.

Assume e = 3. When e = 1 the argument is symmetric and omitted. Then we have

x̂1 = x1 and x̂3 = max {x2, x3 + 2δr1(x2 − x3)}. Denote by σ′ profile of strategies induced

by x̂ = {x1, x2,max {x2, x3 + 2δr1(x2 − x3)}}. Trivially, condition S holds for player 1 and

it is easy to see that it fails for player 3. Using similar arguments as in the proof of case

3 of Proposition 11, we have N3(σ
′) = {x̂3, da(x1), x3} with da(x1) ∈ (x̂3, x3). Denote by

σ′′ = (x1, x2, (x̂3, xa)) profile of simple adjusted proposal strategies, with xa from Definition

10. Note that da(x1) < xa and xa < x3. The former because the inequality is equivalent

to d(x1) − 2d(x3)(1 − 2δr1) > 0 and [d(x̂3) − d(x1)]
2 > 0 when δr1 ≥ 1

2
and δr1 <

1
2

respectively. The latter follows from failure of Be. We need to show that σ′′ constitutes

an SMPE.

Lemma A3. Suppose σ′′ = (x1, x2, (x̂3, xa)) where xa is as in Definition 10 and x̂3 =

max {x2, x3 + δr1(xm − x3)}. Then

1. U3(x|σ′′) is continuous, U ′3(x|σ′′) > 0 for ∀x ∈ (x2, x̂3)∪(da(x1), x3) and U ′3(x|σ′′) < 0

for ∀x ∈ (x̂3, da(x1)) ∪ (x3, sup {X});

2. U2(x|σ′′) is continuous on X \ {db(xa), da(xa)}, U2(db(xa)
−|σ′′) < U2(db(xa)|σ′′) and

for ∀x ∈ (inf {X}, x2) \ {db(x3), db(xa), x1, db(x̂3)}, U ′2(x|σ′′) > 0;

3. U1(x|σ′′) is continuous on X \ {db(xa), da(xa)}, U1(db(xa)
−|σ′′) < U1(db(xa)|σ′′),

U ′1(x|σ′′) > 0 for ∀x ∈ (inf {X}, x1) \ {db(x3), db(xa)} and U ′1(x|σ′′) < 0 for ∀x ∈
(x1, db(x̂3)) ∪ (db(x̂3), x2).
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Proof. We start by deriving xa given in Definition 10. xa is implicitly defined by U3(x̂3|σ′) =

U3(xa|σ′). It can be found by solving

[T3(x|σ′)]
x̂+3
da(x1)−

+ [T3(x|σ′)]da(x1)
+

x−a
= 0 (A46)

where T3(x|σ′) = −2
1−δr1

[
x2

2
− (x3 + 2δr1(x2 − x3))x

]
for x ∈ (x̂3, da(x1)) and T3(x|σ′) =

−2
[
x2

2
− x3x

]
for x ∈ (da(x1), x3).

44 Carrying out the straightforward algebra gives xa

from Definition 10. By Lemma 2 part 5 we also have U2(x̂3|σ′) > U2(xa|σ′) and by

implication U1(x̂3|σ′) > U1(xa|σ′), using a similar argument to the one used to prove

Proposition 1.

Next we note Vi(x|σ′) = Vi(x|σ′′) and thus Ui(x|σ′) = Ui(x|σ′′) for ∀x ∈ [db(xa), da(xa)]

and ∀i ∈ {1, 2, 3}. This follows from the fact that σ′ and σ′′ induce identical proposed

policies for any status-quo x ∈ [db(xa), da(xa)] and that any proposed policy for status-quo

x ∈ [db(xa), da(xa)] falls within the [db(xa), da(xa)] interval.

To establish the claimed continuity properties, that Ui(x|σ′′) is continuous for ∀i ∈
{1, 2, 3} and ∀x ∈ X \ {db(xa), da(xa)} can be shown using similar arguments as in proof

of Lemma 2 part 3. For xa the previous paragraph implies Vi(db(xa)|σ′′) = Vi(db(xa)
+|σ′′).

What remains is then Vi(db(xa)
−|σ′′) < Vi(db(xa)|σ′′) for i ∈ {1, 2} and V3(db(xa)

−|σ′′) =

V3(db(xa)|σ′′). By the symmetry of Vi for ∀i ∈ {1, 2, 3} about x2, this will imply Vi(da(xa)|σ′′) >
Vi(da(xa)

+|σ′′) for i ∈ {1, 2} and V3(da(xa)|σ′′) = V3(da(xa)
+|σ′′). Denote Ti(σ′′) =∑

j∈{1,2} rj[ui(xj) + δVi(xj|σ′′)]. Then

V3(db(xa)|σ′′) = r3[u3(x̂3) + δV3(x̂3|σ′′)] + T3(σ′′)
1
= r3[u3(x̂3) + δV3(x̂3|σ′)] + T3(σ′′)
2
= r3[u3(xa) + δV3(xa|σ′)] + T3(σ′′)
3
= r3[u3(xa) + δV3(xa|σ′′)] + T3(σ′′)
4
=
r3u3(xa) + T3(σ′′)

1− δr3

(A47)

where
1
= follows from x̂3 ∈ [db(xa), da(xa)],

2
= follows from definition of xa,

3
= follows from

xa ∈ [db(xa), da(xa)] and
4
= follows from xa = da(xa) and V3(da(xa)|σ′′) = V3(db(xa)|σ′′).

44 The equation is condition N with the last evaluation point being xa instead of x3. xa can be thought
of as being the largest point in (da(x1), x3) such that U3(x|σ′) ≤ U3(x̂3|σ′) holds. That xa is unique
follows from U ′3(x|σ′) > 0 on (da(x1), x3).
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Now for any x ∈ [db(x3), db(xa)) we have

V3(x|σ′′) = r3[u3(da(x)) + δV3(da(x)|σ′′)] + T3(σ′′)

=
r3u3(da(x)) + T3(σ′′)

1− δr3

V3(db(xa)
−|σ′′) =

r3u3(da(db(xa)
−)) + T3(σ′′)

1− δr3
= V3(db(xa)|σ′′)

(A48)

by continuity of u3 and da. Similarly for i ∈ {1, 2}

Vi(db(xa)|σ′′) = r3[ui(x̂3) + δVi(x̂3|σ′′)] + Ti(σ′′)
1
= r3[ui(x̂3) + δVi(x̂3|σ′)] + Ti(σ′′)
2
> r3[ui(xa) + δVi(xa|σ′)] + Ti(σ′′)
3
= r3[ui(xa) + δVi(xa|σ′′)] + Ti(σ′′)
4
=
r3ui(xa) + Ti(σ′′)

1− δr3

(A49)

where
1
=,

3
= and

4
= follow from similar arguments as above and

2
> follows from Ui(x̂3|σ′) >

Ui(xa|σ′) for i ∈ {1, 2}. Again for any x ∈ [db(x3), db(xa)) and i ∈ {1, 2} we have

Vi(x|σ′′) = r3[ui(da(x)) + δVi(da(x)|σ′′)] + Ti(σ′′)

=
r3ui(da(x)) + Ti(σ′′)

1− δr3

Vi(db(xa)
−|σ′′) =

r3ui(da(db(xa)
−)) + Ti(σ′′)

1− δr3
< Vi(db(xa)|σ′′)

(A50)

by continuity of ui and da.

To establish the sign inequalities on U ′i(x|σ′′), for x ∈ [db(xa), da(xa)] and when the

derivative exists, we can use (A6). The claim is then immediate from

rnc,a(x|σ′′) =

r3 for ∀x ∈ (x2, x̂3)

0 for ∀x ∈ (x̂3, da(x1)) ∪ (da(x1), xa)

rnc,b(x|σ′′) =

r1 for ∀x ∈ (x2, x̂3) ∪ (x̂3, da(x1))

0 for ∀x ∈ (da(x1), xa)

(A51)

using the symmetry of rnc,a and rnc,b about x2. For x /∈ [db(xa), da(xa)], U
′
i(x|σ′′) can

still be computed as in (A6) except when the derivative does not exist, that is except at
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{db(x3), da(x3)}. The claim is again immediate using rnc,a(x|σ′′) = r3 for ∀x ∈ (xa, x3),

rnc,a(x|σ′′) = 0 for x > x3 and rnc,b(x|σ′′) = 0 for ∀x ∈ (xa, x3) ∪ (x3, sup {X}). �

From Lemma A3 we know that A(x|σ′′) = [db(x), da(x)]. The same lemma im-

plies that for any x ∈ X, the solution to maxz∈A(x|σ′′) U2(z|σ′′) is x2. The solution

to maxz∈A(x|σ′′) U1(z|σ′′) is easily seen to be db(x) for ∀x ∈ [db(x1), da(x1)] and x1 for

∀x /∈ [db(x1), da(x1)]. The best response of players 1 and 2 to σ′′ = (x1, x2, (x̂3, xa))

are thus x̂1 = x1 and x̂2 = x2 respectively. Again from Lemma A3, the solution to

maxz∈A(x|σ′′) U3(z|σ′′) is da(x) for ∀x ∈ [x2, x̂3] ∪ (xa, x3), x̂3 for ∀x ∈ (x̂3, xa) and x3

for x ≥ x3. At xa, player 3 is indifferent between proposing x̂3 and xa as U3(x̂3|σ′′) =

U3(xa|σ′′), both of which solve her optimization problem. Her best response to σ′′ can

thus be described by ~σ3 = (x̂3, xa). As a result σ′′ constitutes an SMPE.45 �

A1.18 Proof of Proposition 13

The proposition is an implication of Banks and Duggan (2006b). We present full proof in

order to demonstrate dependence of the result on the Euclidean utilities used. The key

to the argument is that for any vector of random variables ~z with vector of means ~µz and

variances ~σ2
z and for Euclidean utility with bliss point ~xi, E[−(~z− ~xi)′(~z− ~xi)] = −[ι′~σ2

z +

(~µz−~xi)′(~µz−~xi)], where ι is n′ vector of ones. Note also ∂
∂~xi

[−[ι′~σ2
z +(~µz−~xi)′(~µz−~xi)]] =

2(~µz − ~xi), which is linear in ~xi.

Now fix any profile of pure stationary Markov strategies σ̂. Consider two policies ~p0 and

~q0 generating stochastic sequence, via σ̂, of policies ~p = {~p0, ~p1, . . .} and ~q = {~q0, ~q1, . . .}
respectively. The utility of player i from voting either for ~p0 or ~q0 is

Ui(~p0|σ̂) = E

[
∞∑
t=0

−δt(~pt − ~xi)′(~pt − ~xi)

]

Ui(~q0|σ̂) = E

[
∞∑
t=0

−δt(~qt − ~xi)′(~qt − ~xi)

]
.

(A52)

45 When Ae holds and Be holds with equality, we are in Proposition 11 part 2. Be satisfied with
equality means xa = xe. Algorithm 1 produces x̂ either with x̂e = xm and x̂−e = x−e or with x̂e =
xe + 2δr−e(xm − xe) and x̂−e = x−e. That σ′′ = (x−e, xm, (x̂e, xe)) constitutes an SMPE then follows
from a similar argument to the one just presented. The only difference is that, using e = 3, (xa, x3)
interval does not exist and p3(x|x̂3, xa) = x̂3 for ∀x ∈ [x̂3, x3] and p3(x|x̂3, xa) = x3 for x > x3, that is,
player 3 switches from proposing x̂3 directly to proposing x3 at xa = x3.
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Differentiating the difference in utility from the two policies with respect to ~xi gives

∂[Ui(~p0|σ̂)− Ui(~q0|σ̂)]

∂~xi
= E

[
2
∞∑
t=0

−δt(~qt − ~pt)

]
(A53)

which is independent of ~xi and hence Ui(~p0|σ̂)−Ui(~q0|σ̂) is linear in ~xi. As a consequence,

for any pair of players {i, ir} for ∀i ∈ N\{m}, which exists by radial symmetry, there exists

at least one player i′ ∈ {i, ir}, such that Um(~p0|σ̂) ≥ Um(~q0|σ̂) implies Ui′(~p0|σ̂) ≥ Ui′(~q0|σ̂)

and Um(~p0|σ̂) < Um(~q0|σ̂) implies Ui′(~p0|σ̂) < Ui′(~q0|σ̂).

Now assume Um(~p0|σ̂) ≥ Um(~q0|σ̂). Then by the argument just made, there are at

least n+1
2

players with Ui(~p0|σ̂) ≥ Ui(~q0|σ̂) and ~p0 is accepted. Conversely, if Um(~p0|σ̂) <

Um(~q0|σ̂), then there are at least n+1
2

players with Ui(~p0|σ̂) < Ui(~q0|σ̂) and ~q0 is rejected.

This implies that ~p0 is accepted if and only if Um(~p0|σ̂) ≥ Um(~q0|σ̂), that is, when the

median player (weakly) prefers ~p0 to ~q0. �

A1.19 Proof of Lemma 8

To see part 1, for ∀~x ∈ X and ∀~y ∈ X with ||~x|| = ||~y||, we have ~pi(~x|k̂i) = ~pi(~y|k̂i) for

∀i ∈ N and any k̂i ≥ 0. Because

Vi(~x|σ) =
∑
j∈N

rj

[
ui(~pj(~x|k̂j)) + δVi(~pj(~x|k̂j)|σ)

]
(A54)

where σ is induced by k̂, Vi(~x|σ) = Vi(~y|σ) for ∀i ∈ N follows.46

For part 2, Ui(~x|σ) = ui(~x) + δVi(~x|σ) for any ~x ∈ X. Because Vi(~x|σ) is constant on

any hypersphere in X by part 1 and since (strict) maximizer of ui(~x) on any hypersphere

in X lies on i-ray when i ∈ N \{m}, we have Ui(k~xi|σ) > Ui(~y|σ) for any ~y ∈ X such that

k||~xi|| = ||~y|| but k~xi 6= ~y.

For part 3, fix k̂ with k̂i ≥ 0 for ∀i ∈ N \ {m} and k̂m = 0 and the induced profile of

strategies σ. Proving that Ui(~x|σ) = ui(~x) + δVi(~x|σ) is continuous on X is equivalent to

proving that Vi(k~xi|σ) is continuous in k on [0,∞). From ||~pi(~x|k̂i)|| = ||~x|| for ∀~x ∈ {~x ∈
X| ||~x|| ∈ D(σ)} and ∀i ∈ NC(||~x|| |σ), combined with part 1, we can rewrite (A54) for

46 We can use (A54) since, when k̂i ≥ 0 for ∀i ∈ N , any proposal generated by the simple proposal
strategy ~pi of any i ∈ N is always accepted, which in turn follows from the properties of the social
acceptance correspondence A proved in part 6. For now, we conjecture that part 6 holds and then confirm
it is the case.
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∀k||~xi|| ∈ D(σ)

Vi(k~xi|σ) =

∑
j∈N rjui(~pj(k~xi|k̂j))

+δ
∑

j∈C(k||~xi|| |σ) rjVi(~pj(k~xi|k̂j)|σ)

1− δrnc(k||~xi|| |σ)
(A55)

which is continuous in k, for ∀i ∈ N , by continuity of ~pj(k~xi|k̂j) for ∀j ∈ N , constancy of

~pj(k~xi|k̂j) for ∀j ∈ C(k||~xi|| |σ) and by local, that is on any interval induced by ND(σ),

constancy of C(k||~xi|| |σ) and rnc(k||~xi|| |σ).

What remains is, for ∀i ∈ N , Vi(~xik
−|σ) = Vi(k~xi|σ) = Vi(~xik

+|σ) for any k ≥ 0

such that k||~xi|| ∈ ND(σ) (the first equality not at k = 0).47 For k = 0 we have

~pj(~xi0
+|k̂j) = ~xm for ∀j ∈ N so that Vi(~xi0

+|σ) = ui(~xm)
1−δ = Vi(0~xi|σ).

For k such that k||~xi|| ∈ ND(σ) \ {0}, we first notice that ~pj(~xik
−|k̂j) = ~pj(k~xi|k̂j) =

~pj(~xik
+|k̂j) for ∀j ∈ N and any k > 0 so that the first sum in the numerator of (A55) is

continuous in k. Now use, for any k > 0 such that k||~xi|| ∈ ND(σ), i) Vi(~pj(~xik
−|k̂j)|σ) =

Vi(~pj(~xik
+|k̂j)|σ) = Vi(~xik

−|σ) for ∀j ∈ C(||~xi||k+|σ) \ C(||~xi||k−|σ) (players who switch

from non-constant to constant part of their strategy at k||~xi|| distance), ii) C(||~xi||k−|σ)∩
C(||~xi||k+|σ) = C(||~xi||k−|σ) (players switch to proposing constant policy at k||~xi||), iii)

rnc(||~xi||k−|σ) = rnc(||~xi||k+|σ) +
∑

j∈C(||~xi||k+|σ)\C(||~xi||k−|σ) rj and iv) Vi(~pj(~xik
−|k̂j)|σ) =

Vi(~pj(k~xi|k̂j)|σ) = Vi(~pj(~xik
+|k̂j)|σ) for ∀j ∈ C(||~xi||k−|σ) ∩ C(||~xi||k+|σ) (players that

propose constant policy in the neighbourhood, below and above, of k||~xi||) to rewrite

(A55), for any i ∈ N ,

Vi(~xik
+|σ) =

∑
j∈N rjui(~pj(~xik

+|k̂j))
+δ
∑

j∈C(||~xi||k+|σ) rjVi(~pj(~xik
+|k̂j)|σ)

1− δrnc(||~xi||k+|σ)

=

∑
j∈N rjui(~pj(~xik

−|k̂j))
+δ
∑

j∈C(||~xi||k−|σ) rjVi(~pj(~xik
−|k̂j)|σ)

+δ
∑

j∈C(||~xi||k+|σ)\C(||~xi||k−|σ) rjVi(~xik
−|σ)

1− δrnc(||~xi||k−|σ) + δ
∑

j∈C(||~xi||k+|σ)\C(||~xi||k−|σ) rj

=

Vi(~xik
−|σ)(1− δrnc(||~xi||k−|σ)

+Vi(~xik
−|σ)δ

∑
j∈C(||~xi||k+|σ)\C(||~xi||k−|σ) rj

1− δrnc(||~xi||k−|σ) + δ
∑

j∈C(||~xi||k+|σ)\C(||~xi||k−|σ) rj

= Vi(~xik
−|σ).

(A56)

47 Vi(~xik
−|σ) and Vi(~xik

+|σ) denote one-sided limits along the i-ray approaching ||~xi||k distance from
origin from below and above respectively.

82



To prove Vi(k~xi|σ) = Vi(~xik
−|σ), we have, from Vi(~pj(k~xi|k̂j)|σ) = Vi(~pj(~xik

−|k̂j)|σ)

for ∀j ∈ C(||~xi||k−|σ) and Vi(~pj(k~xi|k̂j)|σ) = Vi(k~xi|σ) for ∀j ∈ NC(||~xi||k−|σ),

Vi(k~xi|σ) =
∑
j∈N

rj

[
ui(~pj(k~xi|k̂j)) + δVi(~pj(k~xi|k̂j)|σ)

]
=
∑
j∈N

rjui(~pj(~xik
−|k̂j)) + δ

∑
j∈C(||~xi||k−|σ)

Vi(~pj(~xik
−|k̂j)|σ)

+ δrnc(||~xi||k−|σ)Vi(k~xi|σ)

= Vi(~xik
−|σ)(1− δrnc(||~xi||k−|σ))

+ δrnc(||~xi||k−|σ)Vi(k~xi|σ)

(A57)

and the claim, for any i ∈ N , follows.

To prove part 4, ∂2

∂2k
[Ui(k~xi|σ)] < 0 for k ≥ 0 such that k||~xi|| ∈ D(σ) for ∀i ∈ N , we

first show the result for ∀i ∈ N \ {m}. Note that, for any j ∈ NC(k||~xi|| |σ),

ui(~pj(k~xi|k̂j)) = −k2||~xi||2 + 2k||~xi||2
~x ′j~xi

||~xj|| · ||~xi||
− ~x ′i~xi (A58)

and hence ∂
∂k
ui(~pj(k~xi|k̂j)) = −2||~xi||2(k − cos(i, j)) and ∂2

∂2k
ui(~pj(k~xi|k̂j)) = −2||~xi||2.

Using (A55), along with the fact that ~pj(k~xi|k̂j) is constant in k for ∀j ∈ C(k||~xi|| |σ)

and that both C(k||~xi|| |σ) and rnc(k||~xi|| |σ) are both locally, on any interval induced by

ND(σ), constant, we have

∂Ui(k~xi|σ)

∂k
=

2||~xi||2

1− δrnc(k||~xi|| |σ)

1− k − δ
∑

j∈NC(k||~xi|| |σ)

rj[1− cos(i, j)]

 (A59)

for ∀i ∈ N \ {m}. The desired result now follows easily. For m it follows from proof of

part 5.

For part 5, we need to show that, along arbitrary z-ray, ∂
∂k
Um(k~xz|σ) < 0 for k ≥ 0

such that k||~xz|| ∈ D(σ). From ∂
∂k
um(~pj(k~xz|k̂j)) = −2k||~xz||2 for any j ∈ NC(k||~xz|| |σ),

we have
∂Um(k~xz|σ)

∂k
= − 2k||~xz||2

1− δrnc(k||~xz|| |σ)
(A60)

and the claim, using continuity of Um from part 3, follows. Part 6 is then direct consequence

of part 5 and of Proposition 13. �

83



A1.20 Proof of Proposition 14

From Definition 3 of SMPE, the profile of strategies σ̂ constitutes an SMPE, by the one-

stage-deviation principle, if σ̂ induces Ui(σ̂) for ∀i ∈ N and A(σ̂) such that the set of

optimal proposal strategies, arising from maximization of Ui(σ̂) on A(σ̂) for any given

status-quo, includes σ̂.

Fix the profile of strategic bliss points k̂ from Algorithm 2 and the induced profile of

strategies σ. Clearly, the voting strategies subsumed in σ are optimal for every player.

Because k̂ satisfies k̂i ≥ 0 for ∀i ∈ N \ {m} and k̂m = 0, by Lemma 8, ~pi(~x|k̂i) ∈ A(~x|σ)

for ∀~x ∈ X and ∀i ∈ N . That is, proposals with zero probability of acceptance are never

made. Also, for m we have k̂m = 0, hence the proposal strategy of the median player is

optimal by Lemma 8 part 5.

Now let us focus on i ∈ N \ {m}. By Lemma 8 part 2, policy maximizing dynamic

utility Ui of player i, for any status-quo ~x ∈ X, lies on the i-ray. Using the shape of A
from Lemma 8 part 6, we need to make sure that proposing ||~x||

||~xi||~xi for any ~x ∈ X with
||~x||
||~xi|| ∈ [0, k̂i] and k̂i~xi otherwise is optimal for i. Ui making this proposal strategy optimal

has to satisfy Ui(k~xi|σ) ≤ Ui(l~xi|σ) for any k ∈ [0, k̂i] and l ∈ [0, k̂i] such that k < l and

Ui(k̂i~xi|σ) ≥ Ui(k~xi|σ) for any k > k̂i. The first inequality follows from the way Algorithm

2 constructs the strategic bliss points; it generates k̂ such that, denoting the derivative

of Ui(k~xi|σ) with respect to k by U ′i(k~xi|σ), U ′i(~xik̂
−
i |σ) = 0 and U ′i(~xik̂

−
j |σ) ≥ 0 for any

j such that k̂j||~xj|| ∈ [0, k̂i||~xi||), which, combined with the piecewise strict concavity of

Ui, shows the claim. To ensure the second inequality, notice that from (A59) we have

U ′i(k~xi|σ) ≤ 0 for any k ≥ 1 such that k||~xi|| ∈ D(σ), so that Ui(~xi|σ) ≥ Ui(k~xi|σ) for any

k > 1. Hence we need to make sure that Ui(k̂i~xi|σ) ≥ Ui(k~xi|σ) for any k ∈ [k̂i, 1] in order

for σ to constitute an SMPE.

To prove that condition S′ is sufficient, part 1, we have U ′i(~xik̂
+
i |σ) ≤ 0. When k̂i = 0

Algorithm 2 drops i because U ′i(~xik̂
+
i |σ) ≤ 0. When k̂i > 0 Algorithm 2 drops i because

Ui(~xik̂
−
i |σ) = 0 and we have Ui(~xik̂

−
i |σ) = Ui(~xik̂

+
i |σ) from (A59), the fact that exactly

one player is dropped in any step of the algorithm and from 1 − cos(i, i) = 0. Hence, by

the piecewise strict concavity of Ui, we need to ensure that U ′i(~xik
+|σ) ≤ 0 for ∀k||~xi|| ∈

ND(σ) ∩ (k̂i||~xi||, ||~xi||) or, equivalently, ∀k ∈ NDi(σ) ∩ (k̂i, 1) = Si(σ). Using (A59) this

condition becomes 1 − k − δ
∑

j∈NCi(k+|σ) rj[1− cos(i, j)] ≤ 0 (we have used NCi(x) =

NC(x||~xi||) in the expression), which is what the condition S′ requires. Hence if S′ holds,

we have Ui(k̂i~xi|σ) ≥ Ui(k~xi|σ) for any k ∈ [k̂i, 1] and σ constitutes an SMPE.

To prove that condition N′ is necessary and sufficient, part 2, we note that Ui(k̂i~xi|σ) ≥
Ui(k~xi|σ) for any k ∈ [k̂i, 1] is equivalent to Ui(k̂i~xi|σ) ≥ Ui(k~xi|σ) for any k ∈ ((NDi(σ)∪
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Li(σ)) ∩ (k̂i, 1)) ∪ {k̂i, 1} = Ni(σ). To see this, take two adjacent elements of NDi(σ)

from [k̂i, 1], k′ and k′′, with k′ < k′′. If Ui has no local maximum on [k′, k′′], that is

when [k′, k′′] ∩ Li(σ) = ∅, then Ui(k
′~xi|σ) > Ui(k

′′~xi|σ) ⇔ Ui(k
′~xi|σ) > Ui(y~xi|σ) and

Ui(k
′~xi|σ) < Ui(k

′′~xi|σ) ⇔ Ui(k
′~xi|σ) < Ui(y~xi|σ) for any y ∈ [k′, k′′] (equality cannot

occur by the strict concavity of Ui). If Ui has local maximum on [k′, k′′] then exactly one

and we can set k′′′ = [k′, k′′] ∩ Li(σ) and proceed with similar argument using k′′′ instead

of k′′.

To show that Ui(k̂i~xi|σ) ≥ Ui(y~xi|σ) for any y ∈ Ni(σ) is equivalent to N′, for any

differentiable continuous function f , f(x) − f(z) = [
∫
f ′(a)da]xz . When f is not dif-

ferentiable at x, y, z with x < y < z but possesses one-sided derivatives at x, y, z,

we have f(x) − f(z) = [
∫
f ′(a)da]x

+

y− + [
∫
f ′(a)da]y

+

z− . Now, (A59) can be rewritten as

U ′i(k~xi|σ) = −2||~xi||2
1−δ

∑
j∈NCi(k|σ)

rj
[k − ci(k|σ)] where ci(k|σ) = 1− δ

∑
j∈NCi(k|σ) rj[1− cos(i, j)].

Hence
∫
U ′i(k~xi|σ)dk = Ti(k|σ) = −2||~xi||2

1−δ
∑
j∈NCi(k|σ)

rj

[
k2

2
− ci(k|σ)k

]
as NCi(k|σ) is constant

on any interval induced by NDi(σ). Condition N′ then takes into account that Ni(σ) can

have an arbitrary number of elements. When N′ holds, we have Ui(k̂i~xi|σ) ≥ Ui(y~xi|σ) for

any y ∈ [k̂i, 1] and σ constitutes an SMPE. When N′ fails, we have Ui(k̂i~xi|σ) < Ui(y~xi|σ)

for some y ∈ [k̂i, 1] and σ cannot constitute an SMPE, as i would prefer to deviate to

proposing y~xi when the status-quo is y~xi, as opposed to proposing k̂i~xi that σ requires. �

A1.21 Proof of Proposition 15

First index players such that m = n and ir = i + n−1
2

modulo n − 1 for ∀i ∈ N \ {m} so

that N = {1, 2, . . . , n−1
2
, 1r, 2r, . . . , n−1

2

r
,m}. We denote the first and the second half of

the non-median players by H1 = {1, 2, . . . , n−1
2
} and H2 = {1r, 2r, . . . , n−1

2

r} respectively.

We claim that Algorithm 2 selects players to drop such that it drops all the players from

H1 in steps {1, . . . , n−1
2
} and then all the players from H2 in steps {n−1

2
+1, . . . , n−1}. To

show that the claim is true, we will show that when the algorithm, in a generic step, still

includes i, ir and j but not jr, then j cannot be dropped. Assume i ∈ Pt, j ∈ Pt, ir ∈ Pt
and jr /∈ Pt in step t of Algorithm 2. We need to compare 1−δ

∑
s∈Pt rs[1− cos(j, s)] with

1−δ
∑

s∈Pt rs[1− cos(i, s)] = 1−δ
∑

s∈Pt rs[1− cos(ir, s)]. For j to be dropped it must the

case that
∑

s∈Pt cos(j, s)− cos(i, s) ≤ 0. Now cos(j, j) = 1, cos(j, s) = 0 for ∀s ∈ Pt \ {j},
cos(i, i) = 1 = − cos(i, ir) and cos(i, s) = 0 for ∀s ∈ Pt \ {i, ir} so that the left hand side

of the inequality is equal to unity and j cannot be dropped.

To see part 1, when δ = 0 it is obvious. When δ ∈ (0, 1), Algorithm 2 gives an option

to drop one of n − 1 players in step t = 1. In step t = 2, the option is among n − 3

players. The two players not considered are the one dropped in the previous step, i, and
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ir, who can be dropped only at a later step. The algorithm proceeds in this manner

until it includes pairs of players {j, jr}, until step t = n−1
2

. In step t = n−1
2

+ 1 the

algorithm gives an option to drop one of n−1
2

players, in step t = n−1
2

+ 2 one of n−3
2

and

so on, until the final step. The number of different profiles of strategic bliss points is then∏n−1
2

i=1 (n+ 1− 2i)
∏n−1

2
i=1 (n+1−2i

2
) = 2(n−1)/2 (n−1

2
!
)2

.

For part 2 we need to show that any profile of strategic bliss points from Algorithm

2 satisfies condition S′. Suppose the algorithm, in step t with players in Pt still in the

algorithm, has dropped player i′. Then the strategic bliss point of player i′ is k̂i′ = 1 −
δ
∑

j∈Pt rj[1− cos(i′, j)] and condition S′ reads 1− k̂i′ − δ
∑

s∈NCi(k̂+i′ |σ)
rs[1− cos(s, i)] ≤ 0

for ∀i ∈ N \ {Pt ∪m}. Using NCi(k̂+i′ |σ) = Pt \ {i′} and 1 − cos(i′, i′) = 0 the condition

rewrites as
∑

s∈Pt\{i′} cos(s, i)− cos(s, i′) ≤ 0 for ∀i ∈ N \ {Pt ∪m}.48

To see that the condition holds, i′ /∈ Pt \ {i′} and, since i ∈ N \ {Pt ∪m}, i /∈ Pt \ {i′}.
Thus cos(s, i) ∈ {0,−1} and cos(s, i′) ∈ {0,−1} for ∀s ∈ Pt \ {i′}. Now suppose i′ ∈ H2.

Then cos(s, i′) = 0 for ∀s ∈ Pt \ {i′} and condition S′ holds. Now suppose i ∈ H1 and

i′ ∈ H1. Then cos(s, i) = −1 for exactly one s ∈ H2 ⊆ Pt \ {i′} and cos(s, i′) = −1 for

exactly one s ∈ H2 ⊆ Pt \ {i′} and condition S′ holds. Since we do not need to consider

the remaining case, i ∈ H2 and i′ ∈ H1, due to i having been dropped earlier than i′,

we have just shown that condition S′ holds, for all the previously dropped players, when

Algorithm 2 drops player i′. Repeating the argument for any step of the algorithm proves

that the profile of strategic bliss points it produces induces σ that constitutes an SMPE.

Part 3, single-peakedness of Ui(k~xi|σ) in k on R≥0, is direct consequence of condition

S′ being satisfied for i ∈ N \ {m} and of Lemma 8 part 5. �

A1.22 Proof of Proposition 16

Recall that for equiangular G on a circle we index players such that ~x1 = (b, 0), cos(i, 1) =

cos((i − 1)α) for i ∈ {1, . . . , n − 1} where α = 2π
n−1 , ~xi are arranged, with increasing i,

counter-clockwise on a circle of radius b and m = n. With this notation we have cos(i, j) =

cos (i− j)α. Without loss of generality we set b = 1 as G is scale invariant. Throughout

the proof, we use, without further notice, the well known trigonometric identities sin−θ =

− sin θ, cos−θ = cos θ, sin 2θ = 2 sin θ cos θ, sin θ + sinϕ = 2 sin θ+ϕ
2

cos θ−ϕ
2

, cos θ −
cosϕ = −2 sin θ+ϕ

2
sin θ−ϕ

2
and Lagrange’s trigonometric identity

∑n
i=1 cosnθ = −1

2
+

1
2

csc θ
2

sin (n+ 1
2
)θ.

48 This is not fully precise as we are still in step t of the algorithm so σ is not yet fully specified. It is
obvious this is purely a matter of exposition; we can finish specification of σ and then look at i′ dropped
in step t and players dropped before i′, N \ {Pt ∪m}.
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To see part 1, when δ = 0 it is obvious. When δ ∈ (0, 1), we claim Algorithm 2 gives an

option to drop one of n−1 players in step 1 and gives an option to drop one of two players

in any of the remaining steps t ∈ {2, . . . , n − 2}, except for the last one. This produces

2(n−3)(n−1) profiles of strategic bliss points. The key to our claim is that, with Pt players

still in the algorithm for t ∈ {2, . . . , n − 2}, the option regarding which player to drop is

between the pair of players {minPt,maxPt}. This, in any step t ∈ {1, . . . , n − 1} of the

algorithm, creates Pt that is ‘convex’; if it includes players i and j with i ≤ j ≤ n − 1,

then it also includes all the players {i, . . . , j}.
Consider general step t of the algorithm with the set of players still considered Pt and

denote j′ = minPt and j′′ = maxPt. Suppose Pt = {j′, . . . , j′′} where 1 ≤ j′ ≤ j′′ ≤ n− 1.

We need to show the algorithm drops player j′ or j′′. The player to drop in step t will be

the player with the smallest k̂i,t where

k̂i,t = 1− δ
n

∑
j∈{j′,...,j′′}

1− cos (i− j)α

= 1− δ
n
(j′′ + 1− j′)

+ δ
n

csc α
2

[
sin ((j′′ + 1− j′)α

2
) cos ((j′′ + j′ − 2i)α

2
)
] (A61)

which is minimized for i = j′ or i = j′′, due to csc α
2
> 0, α

2
(j′′ + 1 − j′) ∈ [ π

n−1 , π] and
α
2
(j′′ + j′ − 2i) ∈ [−π n−2

n−1 , π
n−2
n−1 ].

For part 2, we need to show that any profile of strategic bliss points from Algorithm

2 satisfies condition S′. Suppose that in step t with Pt still in the algorithm, j′ = minPt
is dropped. When j′′ = maxPt is dropped the argument is symmetric and omitted. The

strategic bliss point of j′ is

k̂j′ = 1− δ
n

(
j′′ − j′ + 1

2

)
+ δ

2n
csc α

2
sin
(
α
(
j′′ − j′ + 1

2

))
(A62)

and we need to check condition S′ for the players dropped previously, that is for i ∈
{1, . . . , j′ − 1} ∪ {j′′ + 1, . . . , n− 1}. Condition S′ reads

1− k̂j′ − δ
n

∑
j∈NCi(k̂+j′ |σ)

1− cos(i, j) ≤ 0 (A63)

which, using NCi(k̂+j′ |σ) = {j′ + 1, . . . , j′′}, rewrites as

− 4sin
(
α
2

(i− j′′ − 1)
)

sin
(
α
2

(i− j′)
)

sin
(
α
2

(j′′ − j′)
)
≤ 0. (A64)
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To see that the inequality holds, we note α
2
(j′′ − j′) ∈ [0, π n−2

n−1 ], if i ∈ {1, . . . , j′ − 1} then
α
2
(i−j′) ∈ [−π n−2

n−1 ,−
π
n−1 ] and α

2
(i−j′′−1) ∈ [−π,− 2π

n−1 ] and if i ∈ {j′′+1, . . . , n−1} then
α
2
(i− j′) ∈ [ π

n−1 , π
n−2
n−1 ] and α

2
(i− j′′− 1) ∈ [0, π n−3

n−1 ]. We have just shown that condition S′

holds, for all the previously dropped players, when Algorithm 2 drops player j′. Repeating

the argument for any step of the algorithm proves that the profile of strategic bliss points

it produces induces σ that constitutes an SMPE.

Part 3, single-peakedness of Ui(k~xi|σ) in k on R≥0, is direct consequence of condition

S′ being satisfied for i ∈ N \ {m} and of Lemma 8 part 5.

For part 4, we use expression for k̂j′ from (A62). When γ
2π

fraction of players has already

been dropped, we have j′′ = n−1 and j′ = γ
2π

(n−1), so that j′′−j′ = (n−1)(1− γ
2π

). Then

limn→∞
δ
n
(j′′ − j′ + 1

2
) = δ(1− γ

2π
), limn→∞

δ
2n

csc α
2

= δ
2π

and limn→∞ sinα(j′′ − j′ + 1
2
) =

− sin γ. Combining these expressions we get limn→∞ k̂j′ = 1−δ+δ
[
γ−sin γ

2π

]
. The expression

used to generate Figure 3a is then limδ→1 limn→∞ k̂j′ = γ−sin γ
2π

. For Figure 3b, for angle,

with horizontal axis, γ fraction 2γ of players has already been dropped and 2γ−sin 2γ
2π

=
γ−sin γ cos γ

π
. �
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