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Abstract

I examine the factors that determine whether a grassroots social movement reaches

the necessary size to achieve its goal. I study a collective action problem where iden-

tical individuals who value the common goal sequentially decide whether to join the

movement. The model has two key ingredients: (i) The movement is facing a free-

riding problem (i.e., while individuals want the movement to succeed, they would

rather have others bear the cost of participation) and (ii) The necessary number of

members to achieve success is ex-ante unknown but it can be revealed as the move-

ment grows in size. The central insight is that an increase in cost of participation, such

as harsher and more likely punishment for members of the movement, can lead to a

drastic surge in membership.
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1 Introduction

It is difficult to predict whether a grassroots social movement will succeed. While the

supporters of a cause fail to mobilize in one case, they take active responsibility in mass

under similar circumstances in another. When we look at movements that rapidly grow and

reach the critical level of participation to achieve their common goal, we see that they often

follow lengthy periods where supporters of the cause were unable to coordinate in collective

action. A significant example of such an abrupt spark in participation is the fall of the Berlin

Wall in 1989. In some cases, rapid mass mobilization is paradoxically triggered by changes

that are meant to deter it. An example of this is repressive action against a movement’s

members reaching a point where it backfires. Such instances range from the Amritsar

massacre of 1919 prompting the mass mobilization of those who oppose the British rule in

India, to more recent cases such as those who oppose the ongoing deforestation of Istanbul

taking to the streets after the use of excessive police force in Gezi Park in 2013.

In this paper, I study when and how the supporters of a cause overcome the problem

of collective action. I argue that while the variation in a movement’s ability to mobilize

may appear arbitrary at first glance, it can be explained in a unified manner through a

threshold phenomenon. A small change in the environment can convince a large number of

“ordinary” individuals who value the cause to pay the personal cost of taking action instead

of free-riding off others. Surprisingly, this small change can be in the form of a higher

personal cost.

To demonstrate this phenomenon, I model the formation of a movement as an ongoing

process. As the movement forms, different individuals encounter the decision of whether to

participate at different points in time (e.g., as they come in contact with the local chapters

of an organization). The movement succeeds if the necessary number of participants is

reached. Participation comes with a cost independent of the outcome, such as the time

dedicated to the movement or the risk of being arrested in the process. These individuals

are identical except for the time at which they encounter the decision: They value the cause

equally, they have to pay the same cost to participate, and all information is public. The key
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ingredient of the setting is that initially, the necessary number of participants for success

is unknown. As the movement continues to grow, however, their progress (or lack thereof)

informs those who value the goal about how many participants are needed to achieve it.

In particular, when the goal itself is reached, the necessary number is revealed. The lack

of success despite a growing movement, on the other hand, makes individuals believe that

more people are needed than they initially thought.

This game yields a unique equilibrium. In this equilibrium, the chance of success is

determined by when the initial participation takes place, which depends on the cost of

participation and the (common) prior belief about how many participants are necessary.

Once an individual decides to participate, those who follow her do so until either the goal

is reached or the base of supporters is exhausted (i.e., all individuals who support the cause

have made their decisions). Thus, the earlier participation starts, the higher is the chance

of success for the movement. Individuals who decide before the initial participant choose

to stay out, knowing that those who will be in their position later will bear the cost. The

structure of the equilibrium suggests that due to free-riding, it can take time for a movement

to get off the ground.

I capture the shifts in the environment surrounding the movement through changes in

cost of participation. The central finding is that for a large set of prior beliefs about the

necessary number of participants, there are critical intervals of cost where the equilibrium

chance of success makes an upward jump. When there is an increase in cost such that it

crosses the lower bound and enters one of these intervals, it becomes optimal for a large

number of early decision makers to participate instead of free-riding off later movers. This

is because in these intervals, they are not only responsible for their own participation in

the movement: the participation of future decision makers depends on theirs as well. By

participating, they can lead the future movers by example, even though they have no private

information to signal and their preferences are the same as everyone else.

The dependence on the actions of earlier movers occurs because the participation de-

cision of an individual is affected by the group size (i.e., number of people already partic-
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ipating) at the time of her move. In particular, observing a larger group leading up to her

move has two potential effects on her incentive to participate that counteract each other.

First, joining a larger group can mean that the difference that her participation makes (i.e.,

her marginal contribution to success) is lower. We can consider this a deterrent “crowding

out” effect. Second, if success has not yet been achieved despite a large group, she updates

her beliefs about the number of participants it takes to achieve the common goal.1 This

makes her think that her participation is more likely to be necessary. We can consider this

an encouraging “information effect”. If the latter effect dominates the former, then a bigger

group incentivizes this individual to participate. Then, for some levels of cost, she partici-

pates if and only if sufficiently many have done so before her without success. That is, her

decision is contingent on a large enough group size for a “critical interval” of cost.

A cost increase leads to higher participation because if an individual is contingent,

earlier movers anticipate it: If the cost lies below a critical interval, early movers know that

the participation of later movers is independent of their own, so they free-ride. If, however,

the cost is raised to an interval where one or more future decision makers are contingent,

these earlier movers start a chain of participation such that each participant puts the next

one in a position where future individuals depend on her. Throughout the paper, I refer to

this phenomenon as a “participation cascade”.

I provide a sufficient condition on prior beliefs about the necessary group size for suc-

cess such that these cascade intervals exist. I show that when there is a large population

playing the game, this condition holds for a large set of commonly used distributions, such

as the log-normal. Then I provide two examples to demonstrate the extent of the change

in success probability caused by participation cascades, including an extreme case where

a small increase in cost leads to a jump from a single participant to all individuals who

value the goal participating. In other words, a slightly higher cost can allow an essentially

non-existent movement to mobilize all of its supporters.

1Specifically, she concludes that the necessary group size is greater than the level she observes. Therefore,

she truncates her beliefs about necessary group size from below.
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Relation to the Literature

My framework has three main contributions to the study of mass mobilization in social

movements. First, I provide an explanation as to how a successful movement can be trig-

gered by adverse developments, such as intensifying persecution of its members.2 This

phenomenon is referred to as the “paradox of repression” (Kurz & Smithey (2018)).

Second, I show that observable participation by “ordinary individuals” who possess no

private information can convince others to participate, triggering a surge in movement size.

Existing research involving actions that spark mass mobilization focuses on heterogene-

ity among the supporters. These actions have been attributed to “extremists” (i.e., those

who value the common goal the most) mobilizing the moderates (Kuran (1991), Lohman

(1994 a,b), Kricheli et al. (2011)). Another proposed source is agents who possess better

information regarding the value of the common goal (Ginkel & Smith (1999), Loeper et

al. (2014)). Finally, it is suggested that observable actions can serve as an aggregator of

private information dispersed across the population (Lohmann (1994 a,b), Chwe (2000),

Bueno de Mesquita (2010), Battaglini (2017), Barbera & Jackson (2020)). I focus on an

environment where all information is public and all supporters are identical to show that

the actions which mobilize the masses need not come from extremists, fringe groups, or

insiders. They can take place purely by virtue of their observability.3

Third, I provide conditions on prior beliefs such that the participation of others encour-

2Kricheli et al. (2011) predict that repression makes protests less likely to occur, but more likely to lead

to a revolution once they do. However, it unambiguously decreases the ex-ante probability of a revolution.

Winter (2009) describes a related result for a different setting: Optimal reward schemes in a team project.

He finds that if efforts are complementary in the production technology, we can design two (heterogeneous

across members) reward schedules such that one induces more effort although it rewards all team members a

lower amount for a successful project.

3This insight also extends to the general study of public good provision. Contributions by early movers

aimed at manipulating the decisions of others are referred to as “leading by example” (see Drouvelis (2021)

for a survey of experimental evidence). As in the social movement literature, this is mainly attributed to het-

erogeneity (e.g., asymmetric information in Hermalin (1998), heterogeneous preferences in Winter (2009)).
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ages or deters a supporter of the movement from participating herself. Much of existing

work on social movements abstracts away from a potential deterrence by imposing strategic

complementarity. Examples include Kuran (1991), Kricheli et al. (2011), Edmond (2013),

Hsieh et al. (2023), and the literature using a global game approach (e.g., Angeletos et al.

(2007)). I make no a priori restriction on the complementarity of individual participations.

Instead, I examine movement formation as a collective action problem, which allows for

free-riding incentives (via strategic substitutability) in addition to the usual coordination

concerns (Olson (1971)).

Through this approach, I show that the willingness of a supporter to participate can

increase with the number of participants they observe, while decreasing with how many

others they expect to participate in the future. This discrepancy between the effects of

knowledge and expectation regarding the participation of others is in line with recent em-

pirical evidence on protest behavior: While improved information transmission is found to

increase protest attendance (Enikopolov et al. (2020), Manacorda & Tesei (2020)), when

only the beliefs about the number of participants are varied, evidence of strategic substitutes

is found (Cantoni et al. (2019)).

Regarding the payoff structure, this paper is related to Basak et al. (2023) and Matta

(2024) who model the success of a protest as a public good. Basak et al. (2023) take a

simultaneous setting under uncertainty, and examine the effects of information similarity

between groups of potential participants. Matta (2024) looks at a dynamic setting with a

known success threshold, and argues the existence of equilibria where a positive number

of people participate even when there are arbitrarily many potential participants. I study a

public good problem that combines a sequential structure and (common) threshold uncer-

tainty. The consequent collective learning is at the heart of the backfiring repression result,

as well as the opposing incentive effects of observing and expecting others’ participation.

The rest of the paper is organized as follows. Section 2 introduces the model. Section 3

provides a sufficient condition for participation cascades and discusses when it applies for

large populations. Section 4 analyzes the model for two example threshold distributions.
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Section 5 concludes.

2 Model

Consider the following game where a finite number N of identical individuals are to form

a group in order to produce a public good. The game consists of N periods of time. In

each period, one individual is randomly selected to move without replacement (i.e., each

individual is drawn in exactly one period). Let Player i denote the individual who is drawn

to move in period i ∈ {1, ..., N}. Player i chooses an action ai ∈ {0, 1}, where actions 0

and 1 stand for pass and participate respectively. Prior to her move, Player i observes the

action of all players {1, ..., i− 1} who have moved before her. After the move of Player N ,

the game ends. 4

If the number of players who choose to participate reaches threshold t ∈ N+, a public

good is produced and all players obtain utility 1 regardless of their action. If a player

participates, she pays cost c ∈ (0, 1) with no refunds. We can summarize the payoff of

Player i as follows.

ui = 1

{
N∑
j=1

aj ≥ t

}
− 1{ai = 1}c

Throughout the analysis, it is assumed that players choose to participate in case of

indifference.5

Ex-ante, threshold t is unknown. It is common knowledge that this threshold will be

revealed to all as soon as the number of players i who play ai = 1 reaches t (before

4All results presented in the paper carry through if we allow players to only observe the number of players

who have chosen to participate, instead of the complete action profile. The optimal action at a given period

depends on the history of play only through the number of participants. Therefore, the game yields the same

equilibrium path under this alternative specification. This is shown in Appendix A.1.

5This assumption is required only for finitely many values of cost c in the interval (0, 1). For generic cost,

all results discussed in the analysis continue to hold without this assumption.
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the remaining players make their move). The game effectively ends as soon as t players

choose to participate, because it is revealed that the public good has already been produced

and there is no more gains from participating for those who move later.

It is common knowledge that ex-ante, t follows prior probability distribution F with

supp(F ) ⊆ N+. Denote by p and F the probability mass function and cumulative dis-

tribution function of t respectively. That is, p(n) dentoes the prior probability that t = n

for n ∈ N+. Given that t has not yet been reached, the belief of Player i is the Bayesian

posterior as a function of the number of players who chose to participate up to her turn. In

particular, if she observes k ∈ {1, ..., i − 1} participants prior to her turn without success

(i.e., without the threshold having been reached), she conditions her belief on t > k. The

solution concept is subgame perfect equilibrium.

3 General Case

In this section, I first discuss the structure of the unique equilibrium path in the above

model. Then I argue that raising the cost c above certain levels can lead to an upward jump

in the equilibrium group size (that is, the number of players who choose to participate on

the equilibrium path), and thus the probability of producing the public good. I provide a

sufficient condition on distribution F such that these upward jumps occur and discuss the

underlying mechanism. Finally, I describe some cases where this condition holds when the

game is played by a large number of players.

3.1 Equilibrium Path

As described in the previous section, once threshold t has been reached the public good

has already been produced and there is no gain from participating. Thus, any strategy that

chooses to participate after the threshold is reached is strictly dominated. Here I discuss

the action of a player given that the threshold has not yet been reached by the time of her

move. Let “potential participant” describe a player who participates if the threshold is not
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reached by the time of her move (i.e., Player i is a potential participant if she participates

given that the threshold is not reached by period i). If a player is not a potential participant,

then she passes regardless of whether the threshold has been reached.

The ex-ante probability of success (i.e., producing the public good) is equal to the

probability that the number of potential participants is greater than or equal to threshold t.

That is, if the number of potential participants is s ∈ {1, ..., N}, the success probability is

given by F (s). The marginal return (in terms of added ex-ante success probability) to one

further participant when there are s potential participants is given by F (s + 1) − F (s) =

p(s + 1): This additional participant will be pivotal to success if and only if the threshold

is s+ 1.

While the equilibrium number of potential participants and the resulting success prob-

ability depends on the exact specification of distribution F , we can make the following

observations on the structure of the unique equilibrium path. Proofs of all results can be

found in the Appendix.

Proposition 1. The game yields a unique equilibrium. The following hold on the equilib-

rium path.

(a) If there are any potential participants, then there exists an initial participant n∗ ∈

{1, ..., N} such that Player i is a potential participant if and only if i ∈ {n∗, ..., N}

(b) If c ≤ p(N − i+ 1), then Player i is a potential participant.

The first observation states that on the equilibrium path, all players who move before

some period n∗ pass. Player n∗ is the first one to participate and after her, the remaining

players participate until either the threshold is reached or all N players have made their

moves without reaching the threshold. In other words, once participation starts, it continues

until success or the end of the game. The success probability of the group is determined by

the order of this initial participant n∗. The earlier the initial participant (i.e., lower n∗), the

more potential participants there are and the higher is the ex-ante probability of success.

Note that with sufficiently high cost c, there is no initial participant and all N players pass

on the equilibrium path.
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The second observation states a sufficient condition for a given Player i to be a potential

participant on the equilibrium path. If Player i knows that all of the later N − i movers

are potential participants and all of the earlier movers have passed, then the return to her

participation is given by p(N − i+1). If this return is greater than the cost, then Player i is

a potential participant in equilibrium. In other words, if Player i is willing to be the initial

participant when those who move later are potential participants regardless of her action,

then she herself is a potential participant in equilibrium. Note that this is not a necessary

condition. The cascades described in the remainder of the paper occur because when the

decision of a player influences later movers, she may participate even though the return to

her individual participation does not cover the cost.

Finally, note that the two observations together mean there is at least max{n ∈ {1, ..., N} :

p(n) ≥ c} potential participants in equilibrium. That is, if the probability that a given par-

ticipation level n is the threshold for success is greater than the cost, then that participation

level will be met in equilibrium (unless success is already achieved before it is met). To

see this, note that if p(n) ≥ c for some n ∈ {1, ..., N}, then observation (b) implies that

Player N − n + 1 is a potential participant, which by observation (a) means that all n

players in {N −n+1, ..., N} are potential participants. It is worth noting that lower bound

max{n ∈ {1, ..., N} : p(n) ≥ c} is the number of potential participants that would arise

without the information externality caused by observing earlier players participate without

success. In particular, it is the highest number of participants across all Nash Equilibria if

the game is played with simultaneous decisions. Furthermore, it is the number of partici-

pants in the unique equilibrium of the game if the decisions are sequential but the threshold

is revealed after all players have made their moves instead of being revealed as soon as

it is reached. This level will be used as a benchmark for the analysis of the participation

cascades in our setting.
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3.2 Participation Cascades: A Sufficient Condition

Denote by s∗ the equilibrium group size (i.e., number of potential participants on the equi-

librium path). By Proposition 1, we have s∗ := N − n∗ + 1 and the ex-ante success

probability in equilibrium is given by F (s∗) = F (N − n∗ +1). The following result states

a sufficient condition on threshold distribution F such that s∗ makes an upward jump as a

result of an increase in cost c.

Theorem 1. If p(N − 2) > p(N − 1) > p(N) and p(N)
p(N−1)

> 1 − p(1), then s∗ is non-

monotonic with respect to cost c.

The main observation of this result is that if the ex-ante marginal return p(n) to one

additional participant is decreasing above N −2 participants, but not too fast, then a higher

cost c can yield a larger group size in equilibrium. In particular, when cost c is just below

p(N − 1), Player 1 passes and Player 2 is the initial participant on the equilibrium path.

This leads to equilibrium group size s∗ = N−1. If the cost is raised to just above p(N−1),

however, Player 1 becomes the initial participant, and the equilibrium group size increases

to N .

For the argument behind this increase, consider the equilibrium action of the first two

movers under two cases c = p(N − 1) − ϵ and c = p(N − 1) + ϵ with ϵ small. Theorem

1 requires that we have c < p(N − 2) in both of these cases. Thus, if Player 1 and Player

2 pass, which means the move of Player 3 is reached with zero past participants, all of the

remaining N − 2 players are potential participants in the continuation game by Proposition

1. Now suppose c = p(N − 1) − ϵ. If Player 1 has passed, then Player 2 decides based

on her prior belief and concludes that the return to her participation is p(N − 1) (since

the remaining N − 2 players are potential participants), which is greater than the cost.

Anticipating this, Player 1 then knows that her own participation would yield return p(N).

This return is smaller than the cost for small ϵ, so she passes and Player 2 is the initial

participant in equilibrium. This yields group size N − 1.

If the cost is raised to c = p(N−1)+ϵ, the return p(N−1) is not sufficient to convince
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Player 2 to participate. Thus, Player 1 knows that if she passes, Player 2 will pass as well.

If Player 1 participates and the threshold is not reached, however, then Player 2 rules out

the possibility that the threshold is equal to 1 and she updates her belief accordingly. Since

Player 1 has already participated and there are N − 2 more potential participants after her,

Player 2 knows that her own participation is pivotal to success if and only if the threshold

is N . The increase in success probability resulting from her participation is then given by
p(N)
1−p(1)

, which is greater than the cost (by the condition of Theorem 1). Hence, Player 2 is

willing to participate if and only if she has observed Player 1 participate without success

before her. Anticipating this, Player 1 knows that the participation of Player 2 depends on

hers. She is effectively adding not 1 but 2 potential participants to the group: Herself and

Player 2. Hence, Player 1 becomes the initial participant and the equilibrium group size

increases to N .

To summarize, a player can be incentivized to participate herself by observing others

participate without success. Through this observation, she rules out low group sizes as

threshold candidates, which makes her believe that her own participation is more likely to

be pivotal for reaching the threshold. When the cost is raised to a level where she needs

this additional incentive, her participation becomes contingent on a certain number of past

participants. Anticipating this, earlier movers are prompted to participate as well, knowing

that this will induce the contingent player to do so. As a result, the group size is higher and

success is more likely in equilibrium.

The sufficient condition in Theorem 1 only uses the contingency of one player (Player

2) on one past participant (Player 1). As such, it corresponds to a cascade of size 1. The ex-

amples in the next section show that more drastic upward jumps are possible. In particular,

the first example demonstrates that multiple players can be contingent on a past participant

for a given cost. The second example shows that a player can be contingent on a large

number of past participants. This includes the the extreme case where a player who moves

late in the game is contingent on all players up to her turn having participated.
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3.3 Interpreting the Condition in Large Populations

Suppose F has full support over positive integers. In this case, if the convergence rate

limn→∞
p(n+1)
p(n)

of p to 0 is sufficiently high (greater than 1 − p(1)), then there is a number

N such that the condition presented in Theorem 1 is satisfied for all N > N . In other

words, if the threshold distribution decays sufficiently slowly and the game is played by

sufficiently many players, then Theorem 1 applies.

The condition holds for large N regardless of initial value p(1) if p converges to zero

sublinearly. That is, if limn→∞
p(n+1)
p(n)

= 1. For example, if p(n) =
∫ n

n−1
f(x)dx where f is

the density of the log-normal distribution, then the property limn→∞
p(n+1)
p(n)

= 1 is satisfied

and the upward jumps in group size will occur for sufficiently large N . Furthermore, any

power law distribution (i.e., p(n) follows a power law n−α after some value of n), converges

to zero at a sublinear rate. An example is the case where the threshold is Pareto distributed.

Hence one implication of Theorem 1 is that in large games, participation cascades occur at

certain cost intervals when the threshold distribution is sufficiently heavy tailed. Note that

sublinear convergence of p is not a necessary condition. Example 2 in the following section

analyses a case where limn→∞
p(n+1)
p(n)

< 1 but participation cascades are still observed.

4 Examples

This section analyzes the equilibrium of the model under two threshold distributions to

illustrate the extent of the participation cascades introduced for the general case above.

First, I discuss the case where there the threshold can only take one of two possible values.

Second, I look at the case where the threshold follows a geometric distribution with an

uncertain parameter.

4.1 Two Possible Thresholds

Suppose supp(F ) = {t, t} with t, t ∈ N+ and t < t < N . Assume p(t) = 1− p(t) > 0.5.

The following result states the equilibrium group size as a function of cost c.
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Theorem 2. The equilibrium group size in the model with two possible thresholds is as

follows.

s∗ =


t; c ∈ (0, p(t)]

t; c ∈ (p(t), p(t)]

t; c ∈ (p(t), 1)

Early movers {1, ..., N−t} free ride off the later t movers and never participate in equi-

librium. If cost c is lower than the probability of both possible thresholds, then the group

size is t, which guarantees that the public good is produced. For interior levels where the

cost c is lower than the probability of low threshold t but higher than that of high threshold

t, only the low threshold is met in equilibrium. This leads to ex-ante probability p(t) of

producing the public good. The main observation of this result is the third case. If the cost

is above p(t), then once again just enough players participate in equilibrium to guarantee

the production of the public good. Hence, raising the cost above the level p(t) increases the

group size and the probability that the public good is produced. In short, the reason is that

with high cost, participation by late movers becomes contingent on sufficiently many past

participants. This leads to cascades of participation among earlier movers.

The equilibrium group size in the first two cases c ≤ p(t) and c ∈ (p(t), p(t)] are

unsurprising: A candidate group size is met in equilibrium if and only if the likelihood that

it is the necessary threshold for success is greater than the cost. That is, s∗ = max{n ∈

{1, ..., N} : p(n) ≥ c}

If c > p(t), then no individual participation yields high enough returns to cover the

cost under the prior threshold distribution. If, however, a player follows a history where at

least t earlier players have participated without success, she rules out the possibility that

the threshold is t and is certain that it is t. If she is in a position where she is pivotal to

the group size reaching t after such a history, then her decision is between producing the

public good for certain or with zero probability, which prompts her to participate at any

cost. Thus, if the move of Player N − (t − t) + 1 is reached with t past participants and

no success, the remaining t − t players are all potential participants since they know for
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certain that the threshold is t. Otherwise, they all pass since their decision is based on their

prior belief. The previous t movers anticipate this. Starting from Player N − t+1, each of

them participates and puts the next mover in a position where she must also do so in order

the continue the chain of t participations that will change the belief of the last t− t movers.

Thus, every player from Player N − t + 1 onwards is in a position where the potential

participation of all later movers is contingent on hers. This makes it worth paying cost c

and the number of potential participants is t. Success is guaranteed.

4.2 Geometric Threshold

Suppose the threshold follows a geometric distribution with a parameter p that is unknown

(i.e., F is a compound geometric distribution). In particular, p can take one of two possible

values p1 or p2 with p1 > p2. The common prior belief of the players is that p = p1 with

probability q and p = p2 with probability 1− q. Then the prior probability that threshold t

is equal to n ∈ N+ is given by

p(n) = q((1− p1)
n−1p1) + (1− q)((1− p2)

n−1p2)

It is possible to interpret this threshold distribution in two ways. One interpretation is

that as the current group size becomes larger, the marginal contribution of a further member

decreases at a constant but unknown rate. A second interpretation is that when there is a

new participant, the group makes a new (independent) attempt at producing the public

good.6 However, the difficulty of the attempts is unknown to the players. Then, p = p1 and

p = p2 correspond to the easy and the difficult states of the world respectively.

In the remainder of this section, I state the necessary and sufficient condition under

which participation cascades occur in this setting. Then I discuss the equilibrium group

size in cases where this condition is violated and satisfied, respectively.

6With this interpretation, it can be argued that these attempts should not be independent but instead be-

come more likely to succeed with more participants. Here I take parameter p as constant across number of

participants for tractability of the equilibrium characterization. In general, it is confirmed by Theorem 1 that

the cascades discussed here occur whenever parameter p is a non-decreasing function of the group size.
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Proposition 2. Equilibrium group size s∗ is monotonic with respect to cost c if and only

if p1(1 − p1)
N−2 ≥ p2(1 − p2)

N−2. If s∗ is monotonic, then s∗ = max{n ∈ { 1, ..., N} :

p(n) ≥ c}

This first implication of this result is that for any given (p1, p2) ∈ (0, 1)2, there exists

a value N such that s∗ is non-monotonic for all N > N . Thus, if the game is played

by sufficiently many players, upward jumps in group size with respect to cost c will be

observed. The second implication is with respect to the possible parameters p1 and p2.

Fixing N , we can conclude that if s∗ is non-monotonic under some pair (p1, p2), then it is

also non-monotonic under any (p′1, p
′
2) with (p′1, p

′
2) ≥ (p1, p2).7 This can be interpreted as

for a given N , cascades occurring if and only if the possible parameters of the distribution

are sufficiently high. In other words, for a given population of players, cascades occur if

the prior belief is that producing the public good is “sufficiently easy”.

When s∗ is monotonic with respect to c, a number n ∈ {1, ..., N} of potential partic-

ipants is met in equilibrium if and only if the likelihood p(n) that n is the threshold for

success is greater than the cost. As a result, we have s∗ = max{n ∈ {1, ..., N} : p(n) ≥ c}

for the equilibrium group size. Clearly, s∗ is decreasing with respect to cost c in this case.

The following result states the equilibrium group size for a range of parameters in the

non-monotonic case.

Theorem 3. Assume p1 + p2 > 1 and p2 ∈ (q, 1− q). For all n ∈ {2, ..., N − 1} there is a

kn ∈ N such that an interval

Ck
n :=

( p(n+ k − 1)

1− F (k − 1)
,min

{ p(n+ k)

1− F (k)
,

n+k∑
m=n

p(m)
}]

exists for all k ∈ {1} ∪ {kn, kn + 1, ...}. If c ∈ Ck
n for some pair (n, k) with n + k ≤ N ,

then s∗ = n+ k. Otherwise s∗ = max{n ∈ { 1, ..., N} : p(n) ≥ c}.

7The condition stated in Proposition 2 is under the assumption p1 > p2 and reversed for p2 > p1. The

observation that the pairs (p1, p2) which violate the monotonicity condition constitutes an upper set of the

allowed pairs holds in both cases.
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Theorem 3 means that for n ∈ {2, ..., N − 1} and for k either equal to 1 or sufficiently

high, there is a cost interval Ck
n in which s∗ makes an upward jump (of size k + 1) with

respect to the monotonic case group size max{n ∈ { 1, ..., N} : p(n) ≥ c}. Outside these

intervals, s∗ is as in the monotonic case. Therefore, a small increase in cost c can cause

a large surge in success probability, when it leads to c entering an interval Ck
n. This is in

contrast to the monotonic case, where s∗ decreases gradually with respect to c. There is a

straightforward interpretation for these intervals: If cost c lies in interval Ck
n, then Player

N−n+1 is willing to participate if and only if she follows a history where at least k earlier

players have participated without success. Furthermore, for this cost interval the k players

preceding her are willing to provide that history. Figure 1 is a visual representation of the

equilibrium group size with respect to c in a 4 player game.

Figure 1: The equilibrium group size w.r.t. c under (q, p1, p2) = (0.4, 0.8, 0.5) in a 4 player game. The

red regions represent the “upward jump” intervals (from left to right: Player 2 contingent on 1, Player 3

contingent on 1 and Player 3 contingent on 2 past participants). The group size in the black regions are

identical to the monotonic case. Note that depending on the parameters, regions C1
2 and C2

2 may or may not

be adjacent.

To see the why a cascade occurs for c ∈ Ck
n, consider the decision of the contingent

Player N−n+1. Given that all n−1 players after her are potential participants and there has
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been k − 1 participants without success before her move, she knows that her participation

is pivotal to success only if the threshold is n + k − 1. Furthermore, she knows that the

threshold is greater than k − 1. In this case, the return to her participation is p(n+k−1)
1−F (k−1)

.

Similarly, if she follows k past participants, then this return is p(n+k)
1−F (k)

. Since c ∈ Ck
n, the

return is higher than the cost if and only if she is moving after at least k past participants.

The player who moves k stages before the contingent player N − n + 1 is responsible

for starting the chain that makes her a potential participant. In effect, by participating,

this player increases the number of potential participants from n − 1 to n + k. Then the

increase in success probability caused by the participation of this player is
∑n+k

m=n p(m),

which is higher than the cost for c ∈ Ck
n. She starts the cascade of k participants aimed at

encouraging the contingent player N − n+ 1 and the resulting group size is n+ k.

Note that a cascade of size k > 1 occurs only if there is a pair (n, k) such that cost

interval Ck
n exists and there are at least n+ k players in the game. The former condition is

satisfied when k is sufficiently large (i.e., greater than lower bound kn for given n). For the

latter condition, we need N to be sufficiently large (i.e., greater than n + k). Combining

these two observations, we see that drastic upward jumps in group size occur when the

game is played by many players. For instance if N is sufficiently large, then for each

n ∈ {2, ..., N−1} there is an interval CN−n
n . When c ∈ CN−n

n this means Player N−n+1

participates if and only if every player before her did so, and Player 1 is indeed willing to

start this cascade of size N − n. So when the cost is raised to this interval, the equilibrium

group size can jump from n−1 (which can be as low as 1) to N (which means all players are

potential participants). This demonstrates the extent to which the probability of success in

large groups can be influenced by the common understanding that when the goal is reached,

the players will know it.

Finally, turning to the parameter restrictions, it can be seen from Proposition 2 that

p2 ∈ (q, 1 − q) and p1 + p2 > 1 are not necessary conditions for cascades to occur. In

particular, p1 + p2 > 1 implies that probability p(n+k)
1−F (k)

is increasing with k for all n ∈

{2, ..., N − 1}. This means that for any player in {2, ..., N − 1}, the return to participating
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is increasing with respect to the number of past participants without success. In general,

observing one more past participant before her move has two opposing effects on a player’s

incentive to participate: First, a larger group size means higher chance of success without

her participation and provides additional incentive to free ride.8 Second, observing one

more past participant without success allows her to rule out one more threshold value,

increasing the probability she assigns to higher threshold values. This makes it more likely

that the group will fail without her, making her participation more likely to be necessary.

In the example here, if p1, p2 are sufficiently high, the second (positive) information effect

outweighs the first (negative) free riding effect. As a result, there are intervals of cost where

the participation of a player is contingent on sufficiently many past participants. Condition

p1 + p2 > 1 guarantees that this is the case for all players in {2, ..., N − 1}. 9

5 Concluding Remarks

Successful grassroots movements are often characterized by sudden surges in mobiliza-

tion, triggered by developments that make life more difficult for participants. I set out

to examine this seemingly counter-intuitive phenomenon by focusing on the incentives of

“ordinary people” who support the cause during the formation of the movement. To this

end, I account for two natural aspects of movement formation. First, achieving the com-

mon goal benefits not only those who played an active role, but everyone who values it.

Second, when individuals observe the movement’s current degree of success, they use this

observation to make inferences about the difficulty of its task.

I find that an arbitrarily small change in the circumstances surrounding the movement

8Note that in our geometric example, the marginal return to a new participant is strictly decreasing with

group size. In other words, there is decreasing returns to scale. This is the case whenever the threshold thresh-

old probability p(n) is a decreasing function. This means if distribution F has infinite support, decreasing

returns to scale will always hold for a sufficiently large number of players.

9The other condition p2 ∈ (q, 1− q) guarantees that at most one player is contingent for a given cost, and

is assumed for tractability.
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can lead to a drastic rise in its membership. This rise can be to such an extent that a

small increase in participation cost allows a virtually non-existent movement to mobilize

all of its supporters. Furthermore, I describe a mechanism where by participating herself,

an individual with no special characteristics or private information can induce others to

do so. This mechanism suggests an informational foundation for conditional participation

(described as “I will go if you go” by Chwe (2000)), a pattern commonly observed in

grassroots movements and often imposed a priori through strategic complementarity in

theoretical literature.

While the focus of this paper is grassroots movements aimed at political change, the

mechanism I describe can be extended to other games of regime change where the benefits

of leaving the status quo are not entirely restricted to the ones who contribute to it (i.e.,

where regime change has a public good component).10 Examples of such cases include

crowdfunding of an entrepreneurial venture whose success is enjoyed by a large group and

investment in R&D for curing a widespread disease. A potentially useful direction of fur-

ther analysis is to study the incentive effects of the information externality I describe in

situations where regime change has a “public bad” component that needs to be prevented

at a personal cost. Among possible instances are the consideration of adverse macroeco-

nomic consequences of a large bank’s insolvency during a bank run and firms investing in

measures against climate change.

Appendix A: General Case

In Appendix A.1., I introduce additional notation and show that for generic cost c (or

alternatively under the assumption to participate when indifferent), there exists a unique

equilibrium. Then, I derive the condition such that a player’s equilibrium path action is

10Games of regime change are described as “[...] coordination games in which a status quo is abandoned,

causing a discrete change in payoffs, once a sufficiently large number of agents take an action against it”

(Angeletos et al. (2007)).
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to participate. The additional notation and the participation condition will be used in all

proofs. In Appendix A.2., I prove the results from Section 3.

A.1. Equilibrium Uniqueness and Optimality of Participation

Denote by xi ∈ {0, ..., i− 1} the number of participants prior to period i ∈ {1, .., N}. That

is, xi :=
∑i−1

j=1 aj . Recall that when the threshold is reached, it is immediately revealed

to all players. Since there is no gain from participating after the threshold is reached,

all strategies that do so are strictly dominated. Henceforth, unless otherwise noted, the

term “history xi” will refer to histories of play where xi previous players have chosen to

participate and the threshold has not yet been revealed.

Consider the decision of Player N (final mover) following any history where xN ∈

{0, ..., N − 1} previous players participated and the threshold has not been revealed (i.e.,

no success). No success means that the threshold is greater than xN , so Player N conditions

her belief on t > xN . If Player N plays aN = 1 herself, then the game ends with xN + 1

participants. This yields success probability p(xN+1)
1−F (xN )

with participation cost c. If Player N

plays aN = 0, she pays no cost and success is impossible. Therefore, given history xN ,

participating is optimal for Player N if and only if p(xN+1)
1−F (xN )

≥ c. Since xN and therefore the

left hand side can only take finitely many values, this condition is either violated or holds

with strict inequality for generic cost. In either case, Player N has a unique best response.

In other words, the following is true for all xN ∈ {0, ..., N−1}: Any subgame that starts at

period N with xN previous participants and no success yields the same unique equilibrium.

Next, take some period j ∈ {1, ..., N − 1} and suppose by induction that the subgame

starting in period j + 1 has a unique equilibrium for each history xj+1. Define function

si : {0, ..., i − 1} 7→ {0, ..., N − i + 1} where si(xi) denotes the number of potential

participants on the equilibrium path of the subgame that starts at period i under history
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xi. 11 We can describe the decision of Player j under history xj as follows. Since there

has been no success with xj participants, Player j conditions her belief on t > xj . If

Player j plays aj = 1, she pays cost c. If the threshold is not reached with her partic-

ipation, the continuation game inherits history xj+1 = xj + 1 and yields sj+1(xj + 1)

potential participants. This results in a total success probability of F (xj+sj+1(xj+1)+1)−F (xj)

1−F (xj)
.

If Player j plays aj = 0, she pays no cost and the continuation game inherits history

xj+1 = xj , yielding sj+1(xj) potential participants. This results in total success probability

of F (xj+sj+1(xj))−F (xj)

1−F (xj)
. Therefore, participating is optimal for Player j if and only if

F (xj + sj+1(xj + 1) + 1)− F (xj + sj+1(xj))

1− F (xj)
≥ c

where the left hand side corresponds to the difference in success probability caused

by her participation, given her posterior belief. Once again, this left hand side can only

take finitely many values, so Player j has a unique best response for generic c. Since the

induction hypothesis has been shown above to hold for j = N − 1, we can set j = 1 and

conclude that the supergame yields a unique equilibrium for generic cost. The equilibrium

number of potential participants in the supergame is s1(0).

Finally, define function a∗i : {i, ..., N}×{0, ..., i−1} 7→ {1, 0} where a∗i (j, xi) denotes

the equilibrium path action of Player j ∈ {i, ..., N} in the subgame that starts from period

i under history xi, conditional on the threshold not having been reached by period j. This

means si(xi) =
∑N

j=i a
∗
i (j, xi) for the number of potential participants in each subgame.

Using this notation, we restate the optimality condition for Player i to participate under

history xi < t (given equilibrium continuation) as

a∗i (i, xi) = 1 ⇐⇒ F (xi + si+1(xi + 1) + 1)− F (xi + si+1(xi))

1− F (xi)
≥ c (ICi,xi

)

where (ICi,xi
) stands for the “incentive constraint” of Player i under history xi. This is

11Recall that potential participant is defined as a player who participates if the threshold has not been

reached by their turn. For instance, given xN previous participants and no success, we have sN (xN ) = 1 if

participating is optimal for Player N and sN (xN ) = 0 otherwise.
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the condition that we will consider throughout the equilibrium analysis. The equilibrium

path action of Player i in the supergame is given by a∗1(i, 0).

A.2. Proofs for Section 3

The following Lemma will be used in all proofs.

Lemma 1. For any i ∈ {1, ..., N − 1} and xi ∈ {0, ..., i − 1}, p(xi+N−i+1)
1−F (xi)

≥ c implies

si(xi) = N − i+ 1.

Proof. Consider Player N under history xN = xi +N − i. Then ICN,xN
yields

p(xi +N − i+ 1)

1− F (xi +N − i)
≥ p(xi +N − i+ 1)

1− F (xi)
≥ c

where the first inequality holds by N ≥ i and the second inequality is the condition of the

Lemma. This means a∗N(N, xi +N − i) = 1 and sN(xi +N − i) = 1.

Now suppose by induction for some j ∈ {i, ..., N−1} that sj+1(xi+j−i+1) = N−j.

Then under history xj = xi + j − i, ICj,xj
yields

F
(
xi + j − i+ sj+1(xi + j − i+ 1) + 1

)
− F

(
xi + j − i+ sj+1(xi + j − i)

)
1− F (xi + j − i)

=
F
(
xi +N − i+ 1

)
− F

(
xi + j − i+ sj+1(xi + j − i)

)
1− F (xi + j − i)

≥
F
(
xi +N − i+ 1

)
− F

(
xi +N − i

)
1− F (xi + j − i)

=
p(xi +N − i+ 1)

1− F (xi + j − i)

≥ p(xi +N − i+ 1)

1− F (xi)
≥ c

where the first equality is by the induction hypothesis, the first inequality holds since

sj+1(xi+j−i) ≤ N−j by definition of s (i.e., there are only N−j remaining movers after

Player j), the second inequality holds from j ≥ i and the third inequality is the condition of

the Lemma. This means a∗j(j, xi+ j− i) = 1 which together with the induction hypothesis

yields sj(xi + j − i) = N − j + 1. The induction hypothesis is shown above to hold for
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j = N − 1. Plugging in i for j in sj(xi + j − i) = N − j + 1 yields si(xi) = N − i + 1,

completing the statement of the Lemma.

Proposition 1. This game yields a unique equilibrium. The following hold on the equilib-

rium path.

(a) If there are any potential participants, then there exists an initial participant n∗ ∈

{1, ..., N} such that Player i is a potential participant if and only if i ∈ {n∗, ..., N}.

(b) If c ≤ p(N − i+ 1), then Player i is a potential participant.

Proof. Existence of a unique equilibrium is shown in Appendix A.1.

Observation (a): I prove this by showing that for all i ∈ {1, ..., N − 1} and j ∈

{i, .., N}, a∗i (i, xi) = 1 implies a∗i (j, xi) = 1. That is, if the optimal action of Player i is

to participate after history xi, then in the continuation game the optimal action of all later

movers must be to participate as well.

If Player i participates under history xi, then we have xi+1 = xi + 1. Thus the observa-

tion is equivalent to a∗i (i, xi) = 1 ⇒ a∗i+1(i+ 1, xi + 1) = 1. I show the counterpositive of

this. First note that a∗i+1(i + 1, xi + 1) = 0 implies si+1(xi + 1) = si+2(xi + 1). Then we

have two cases:

Case (i) a∗i+1(i+ 1, xi) = 1: This implies si+1(xi) = si+2(xi + 1) + 1. Then we have

F (xi + si+1(xi + 1) + 1)− F (xi + si+1(xi))

1− F (xi)

=
F (xi + si+2(xi + 1) + 1)− F (xi + si+2(xi + 1) + 1)

1− F (xi)

= 0 < c

which by (ICi,xi
) means a∗i (i, xi) = 0.

Case (ii) a∗i+1(i+ 1, xi) = 0: this implies si+1(xi) = xi+2(xi). Then we have

F (xi + si+1(xi + 1) + 1)− F (xi + si+1(xi))

1− F (xi)

=
F (xi + si+2(xi + 1) + 1)− F (xi + si+2(xi))

1− F (xi)
< c
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which once again by (ICi,xi
) means a∗i (i, xi) = 0. The inequality holds because if it is

violated, by (ICi+1,xi
) we must have a∗i+1(i+ 1, xi) = 1, which contradicts Case (ii).

From the two cases we conclude that a∗i+1(i + 1, xi + 1) = 0 ⇒ a∗i (i, xi) = 0, and

thus a∗i (i, xi) = 1 ⇒ a∗i (i + 1, xi) = a∗i+1(i + 1, xi + 1) = 1. Iterating this statement

forward yields a∗i (i, xi) = 1 ⇒ a∗i (j, xi) = 1 for all (i, j) such that i ∈ {1, .., N − 1} and

j ∈ {i, ..., N}.

Observation (b): Setting xi = 0 in the statement of Lemma 1, we obtain that p(N −

i+1) ≥ c implies si(0) = N − i+1. Since there are only N − i movers after Player i, this

means a∗i (i, 0) = 1. If in equilibrium we have
∑i−1

j=1 a
∗
1(j, 0) = 0 then Player i is indeed

reached with history xi = 0 and a∗i (i, 0) = a∗1(i, 0) = 1. If
∑i−1

j=1 a
∗
1(j, 0) > 0, then it must

be the case that a∗1(j, 0) = 1 for some j ∈ {1, ..., i − 1} which by Observation (a) means

a∗1(i, 0) = 1

Theorem 1. If p(N − 2) > p(N − 1) > p(N) and p(N)
p(N−1)

> 1 − p(1), then s∗ is non-

monotonic with respect to cost c.

Proof. First suppose c ≤ p(N). By Lemma 1, this implies s∗ = s1(0) = N .

Second, let c = p(N)+ ϵ for ϵ small. Since Theorem 1 requires p(N) < p(N − 1), this

implies p(N) < c < p(N − 1). By Lemma 1, we then have s2(0) = N − 1 and (IC1,0)

reads:

F (s2(1) + 1)− F (s2(0)) = F (s2(1) + 1)− F (N − 1)

≤ p(N) < p(N) + ϵ = c

where the first inequality holds because s2(x2) ≤ N − 1 for all x2 by definition. Thus, the

optimal action of Player 1 is a∗1(1, 0) = 0 and we have s∗ = s1(0) = s2(0) = N − 1 when

c = p(N) + ϵ with ϵ small.

Finally, let c = p(N − 1) + ϵ. From the condition p(N)/p(N − 1) > 1 − p(1) of
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Theorem 1, we have

p(N)

1− p(1)
> p(N − 1) + ϵ = c

for ϵ sufficiently small. This means by Lemma 1 that s2(1) = N − 1.

Furthermore, since Theorem 1 requires p(N − 2) > p(N − 1), we have c = p(N −

1) + ϵ < p(N − 2). Then, again by Lemma 1, we have s3(0) = N − 2. This yields the

following for (IC2,0).

F (s3(1) + 1)− F (s3(0)) = F (s3(1) + 1)− F (N − 2) ≤ p(N − 1) < c = p(N − 1) + ϵ

The first inequality holds because s3(1) ≤ N − 2 by definition of s. Hence, a∗2(2, 0) = 0

and s2(0) = s3(0) = N − 2.

Given the above continuation game, Player 1 faces the following (IC1,0).

F (s2(1) + 1)− F (s2(0)) = F (N)− F (N − 2) = p(N) + p(N − 1)

> p(N − 1) + ϵ = c

This means a∗1(1, 0) = 1 and thus s∗ = s∗1(0) = N .

To summarize, we have shown that for sufficiently small ϵ, the equilibrium group size

is given by

s∗ =


N ; c ≤ p(N)

N − 1; c = p(N) + ϵ

N ; c = p(N − 1) + ϵ

Hence, s∗ is non-monotonic with respect to c.

Appendix B: Examples

In Appendix B.1., I prove the results for Section 4.1. In Appendix B.2., I prove the results

for Section 4.2.
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B.1. Two Possible Thresholds

Theorem 2. The equilibrium group size in the model with two possible thresholds is as

follows.

s∗ =


t; c ∈ (0, p(t)]

t; c ∈ (p(t), p(t)]

t; c ∈ (p(t), 1)

Proof. First note that for all n ∈ {1, ..., N} and k ∈ {1, ..., N − n} we have

p(k + n)

1− F (k)
=



q; n+ k = t

1− q; n+ k = t ∧ k < t

1; n+ k = t ∧ k ≥ t

0; otherwise

(1)

These probabilities will be used throughout the proof.

Observation (i): Equilibrium action a∗1(i, 0) = 0 for all {1, ..., N − t}. That is, all

players {1, ..., N − t} pass in equilibrium. Thus, s∗ = sN−t+1(0).

To see this, suppose a∗1(i, 0) = 1 for some i ≤ N − t. By Proposition 1(a), this implies

a∗1(j, 0) = 1 for all j > i and thus, on the equilibrium path we have xN > t (i.e., the

move of Player N is reached with more than t past participants). This yields the following

decision (ICN,xN
) for Player N .

p(xN + 1)

1− F (xN)
= 0 < c

where the equality holds by Equation (1). So Player N has incentive to deviate to aN = 0.

Regarding the equilibrium action of the remaining players {N − t+1, ..., N}, there are

3 possible cases.

Case 1 (c ≤ 1 − q):. Since p(t) = 1 − q ≥ c, Lemma 1 directly implies s∗ =

sN−t+1(0) = t.

Case 2 (c ∈ (1 − q, q]): First note that since p(t) = q ≥ c, Lemma 1 implies

sN−t+1(0) = t. Consider the decision of Player N − t under history xN−t = 0. Her
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decision (ICN−t,0) is given by

F (sN−t+1(1) + 1)− F (sN−t+1(0)) = F (sN−t+1(1) + 1)− F (t)

≤ p(t+ 1) ≤ 1− q < c

where the first inequality holds since sN−t+1(1) ≤ t by definition of s and the second

inequality holds since p(t + 1) = 1 − q if t = t + 1 and p(t + 1) = 0 otherwise. Then

(ICN−t,0) yields a∗N−t(N − t, 0) = 0 and sN−t(0) = sN−t+1(0) = t.

By induction, assume for some i ∈ {N − t + 1, ..., N − t} that si+1(0) = t. Under

history xi = 0, she faces the following (ICi,0).

F (si+1(1) + 1)− F (si+1(0)) ≤ F (N − i+ 1)− F (t) ≤ 1− q < c

where the first inequality holds by the induction hypothesis and the definition of s (i.e., there

are only N − i movers after Player i). Thus we have a∗i (i, 0) = 0 and si(0) = si+1(0) = t.

The induction hypothesis is shown to hold for i = N−t−1 above. Replacing i by N−t+1

yields s∗ = sN−t+1(0) = t

Case 3 (c > q): Observation (i) implies xi ∈ {0, ..., i − (N − t + 1)} for all i ∈

{N − t + 1, ..., N} on the equilibrium path: That is, since all players{1, ..., N − t} pass,

there can be at most {0, ..., i − (N − t + 1)} participants before Player i. First consider

some player i ∈ {N − t+1, ..., N} under some history xi < i− (N − t+1). Her decision

is given by (ICi,xi
), which is as follows.

F (xi + si+1(xi + 1) + 1)− F (xi + si+1(xi))

1− F (xi)

≤ F (xi +N − i+ 1)− F (xi)

1− F (xi)

=

N−i+1∑
k=1

p(xi + k)

1− F (xi)

=

 q; t− (N − i+ 1) < xi < t

0; otherwise
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where the inequality holds since si+1(xi + 1) ≤ N − i by definition of s and the

second equality holds by the xi < i − (N − t + 1) assumption (i.e., there are not enough

players remaining to reach t after such a history xi so the added success probability by

the participation of Player i is no higher than q). Since c > q, this inequality tells us that

a∗i (i, xi) = 0 for all xi < i− (N − t+ 1).

As ai = 0 means xi+1 = xi < i − (N − t + 1) < i + 1 − (N − t + 1), the same

holds for the decision of Player i + 1 in the continuation game, so she passes as well.

Thus, a∗i (i, xi) = 0 implies a∗i (i + 1, xi) = 0. Iterating this argument forward, we obtain

a∗i (j, xi) = 0 for all j ∈ {i, ..., N}. Hence, for any xi < i−(N−t+1) we have si(xi) = 0.

That is, all remaining players pass if the move of Player i is reached with a history of less

than i− (N − t+ 1) participants.

Next, note that since p(t−t)
1−F (t)

= 1 > c, Lemma 1 implies sN−(t−t)+1(t) = t − t. That

is, if the move of Player N − (t − t) + 1 is reached with history t, all of the remaining

t − t players are potential participants. Summarizing these two observations, we have the

following history dependent continuation after the move of Player N − (t− t).

sN−(t−t)+1

(
xN−(t−t)+1

)
=

 t− t; xN−(t−t)+1 = t

0; otherwise
(2)

Now assume by induction for some i ∈ {N − t+ 1, ..., N − (t− t)} that we have si+1(i−

N + t) = N − i (this is shown to hold for i = N − (t − t) in Equation (2)). Then under

history xi = i−N + t− 1, decision of Player i is given by (ICi,xi
), which is as follows.

F (xi + si+1(xi + 1) + 1)− F (xi + si+1(xi))

1− F (xi)

=
F (t)− F

(
i−N + t− 1 + si+1(i−N + t− 1)

)
1− F (i−N + t− 1)

=
F (t)− F (i−N + t− 1)

1− F (i−N + t− 1)

= F (t) = 1 > c
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where the first equality is the induction hypothesis and the second equality is the application

of the above observation that si(xi) = 0 for all xi < i− (N − t+ 1). The third equality is

because our restriction on i implies i−N+t−1 < t−1, which means F (i−N+t−1) = 0.

Hence, it is optimal for Player i to participate and we have a∗i (i, i−N + t− 1) = 1 and

thus si(i−N + t− 1) = N − i+ 1. This verifies that the induction hypotheses also holds

for i − 1. Setting i = N − t + 1 yields sN−t+1(0) = t. By Observation (i), this means

s∗ = t, the equilibrium group size.

B.2. Geometric Threshold

For the results in Section 4.2. (i.e., Proposition 2 and Theorem 3), the following notation

will be used. Define function gk : N2 7→ [−1, 1] as the difference in public good provi-

sion probability between having n and m potential participants under a history of k (past)

participants where the threshold has not been reached. That is,

gk(n,m) :=
F (k + n)− F (k +m)

1− F (k)

With this notation, the optimality condition of Player i to participate under history xi is

given by

a∗i (i, xi) = T ⇐⇒ gxi
(si+1(xi + 1) + 1, si+1(xi)) ≥ c (IC ′

i,xi
)

Under the compound geometric distribution p(n) = q((1 − p1)
n−1p1) + (1 − q)((1 −

p2)
n−1p2), it is useful to underline three properties of function g.

Property 1:

gk(n+m,n) > gk(n+ 1 +m,n+ 1), ∀n,m, k ∈ N

That is, the the probability gain from having m additional participants is decreasing in

the number of potential participants they are added to.

Property 2:

gk+1(n,m) > gk(n+ 1,m+ 1), ∀n,m, k ∈ N s.t. n > m
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That is, the probability gain from a given number of additional participants increases if

we increase the number of past participants and decrease the number of potential partici-

pants by one.

Property 3: For any k, n ∈ N, we have

gk(n+ 1, n) ≥ gk+1(n+ 1, n) ⇐⇒ (1− p1)
np1 ≥ (1− p2)

np2

That is, the probability gain from an n + 1st potential participant is decreasing with the

number of past participants if and only if (1− p1)
np1 ≥ (1− p2)

np2.

Proposition 2. Equilibrium group size s∗ is monotonic with respect to cost c if and only

if p1(1 − p1)
N−2 ≥ p2(1 − p2)

N−2. If s∗ is monotonic, then s∗ = max{n ∈ { 1, ..., N} :

p(n) ≥ c}

Proof. First Direction of Proposition 2: If (1 − p2)
N−2p1 ≥ (1 − p2)

N−2p2, then the

equilibrium group size is s∗ = max{n ∈ { 1, ..., N} : p(n) ≥ c}, which is monotonically

decreasing w.r.t. c.

It will be shown by induction that under this condition, the equilibirium action of Player

i is a∗1(i, 0) = 1 if and only if p(N − i + 1) = g0(N − i + 1, N − i) ≥ c. Since p(n)

is strictly decreasing over all n ∈ N+, this implies that s∗ =
∑N

i=1 a
∗
1(i, 0) = max{n ∈

{ 1, ..., N} : p(n) ≥ c}.

Base Case: Consider Player N . Since she is the final mover, (IC ′
N,xN

) yields

a∗N(N, xN) = 1 ⇐⇒ gxN
(1, 0) = gxN

(N − i+ 1, N − i) ≥ c

for all xN ∈ {0, ..., N − 1}.

Inductive Step: Consider some player i ∈ {1, ..., N − 1}. Suppose for any player

j ∈ {i+1, ..., N} and under any history xi+1 ∈ {0, ..., i}, we have a∗i+1(j, xi+1) = 1 if and

only if gxi+1
(N − j + 1, N − j) ≥ c. We want to show that this hypothesis implies for any

xi ∈ {0, ..., i− 1} that we have a∗i (i, xi) = 1 if and only if gxi
(N − i+1, N − i) ≥ c. That

is, we need to show the induction hypothesis implies

gxi
(si+1(xi + 1) + 1, si+1(xi)) ≥ c ⇐⇒ gxi

(N − i+ 1, N − i) ≥ c (3)
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for all xi ∈ {0, ..., i− 1}.

Direction ⇒ of (3): By the induction hypothesis, we have:

si+1(xi+1) =
∣∣{j ∈ {i+ 1, ..., N} : gxi+1

(N − j + 1, N − j) ≥ c}
∣∣

Note that (1 − p1)
N−2p1 ≥ (1 − p2)

N−2p2 implies (1 − p1)
np1 ≥ (1 − p2)

np2 for all

n ≤ N−2. By property 3, this means that gxi+1(N−j+1, N−j) ≤ gxi
(N−j+1, N−j) for

all j ∈ {2, ..., N}. Then under the induction hypothesis we have si+1(xi + 1) ≤ si+1(xi).

In particular, we have si+1(xi + 1) < si+1(xi) if c ∈ (gxi+1(N − j + 1, N − j), gxi
(N −

j +1, N − j)] for some j ∈ {i+1, ..., N} and we have si+1(xi +1) = si+1(xi) otherwise.

Now suppose c is such that si+1(xi + 1) < si+1(xi). Since the number of participants

takes values in natural numbers this means si+1(xi + 1) + 1 ≤ si+1(xi) and we have

gxi
(si+1(xi + 1) + 1, si+1(xi)) ≤ gxi

(si+1(xi), si+1(xi)) = 0 < c

which contradicts the left-hand side of (3). Thus, if si+1(xi + 1) < si+1(xi), participat-

ing cannot be optimal for Player i. If participating is optimal for Player i, we must have

si+1(xi + 1) = si+1(xi). In that case, we can write the optimality condition as

gxi
(si+1(xi) + 1, si+1(xi)) ≥ c (4)

By definition, we know that si+1(xi) ∈ {0, ..., N − i}. Now suppose si+1(xi) < N − i.

Then the induction hypothesis and property 1 together imply that a∗i+1(j, xi) = 1 for any

j ∈ {N − si+1(xi) + 1, ..., N} and a∗i+1(j
′, xi) = 0 for any j′ ∈ {i+ 1, ..., N − si+1(xi)}.

Under the induction hypothesis, the latter observation can be written as

c > gxi

(
N − (N − si+1(xi)) + 1, N − (N − si+1(xi)

)
= gxi

(si+1(xi) + 1, si+1(xi))

which contradicts (4). Thus, if participating is optimal for Player i, we cannot have si(xi+

1) < N − i. The only remaining case for a∗i (i, xi) = 1 is si(xi) = si(xi + 1) = N − i.

Thus, we can write

gxi
(si+1(xi + 1) + 1, si+1(xi)) ≥ c ⇒ gxi

(N − i+ 1, N − i) ≥ c
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which is the first direction of (3)

Direction ⇐ of (3): If gxi
(N − i + 1, N − i) = p(N−i+1)

1−F (xi)
≥ c, then Lemma 1 implies

si(xi) = N − i + 1. Since there are only N − i movers after Player i, it must be the case

that a∗i (i, xi) = 1, which is equivalent by (IC ′
i,xi

) to gxi
(si+1(xi + 1) + 1, si+1(xi)) ≥ c.

Thus, we shown that (3) holds for Player i under the induction hypothesis.

Note that setting i = N − 1 in the induction hypothesis yields the base case. Setting

i = 1 (for whom the only possible history is x1 = 0), shows that for all i ∈ {1, ..., N}, we

have a∗1(i, 0) = 1 if and only if g0(N − i + 1, N − i) ≥ c. Since g0(n, n − 1) is strictly

decreasing in n by property 1, only the final max{n ∈ {1, ..., N} : g0(n, n − 1) ≥ c}

movers are potential participants in equilibrium.

Second Direction of Proposition 2: If (1 − p2)
N−2p2 < (1 − p1)

N−2p1, then s∗ is

non-monotonic w.r.t. c.

This statement is obtained immediately by plugging in p(n) = q((1− p1)
n−1p1)+ (1−

q)((1− p2)
n−1p2) into the non-monotonicity condition of Theorem 1.

For the proof, Theorem 3 will be stated equivalently to the text using function g.

Theorem 3. Assume p1 + p2 > 1 and p2 ∈ (q, 1− q). For all n ∈ {2, ..., N − 1} there is a

kn ∈ N such that an interval

Ck
n :=

(
gk−1(n, n− 1),min{gk(n, n− 1), g0(n+ k, n− 1)}

]
exists for all k ∈ {1} ∪ {kn, kn + 1, ...}. If c ∈ Ck

n for some pair (n, k) with k + n ≤ N ,

then s∗ = n+ k. Otherwise s∗ = max{n ∈ { 1, ..., N} : g0(n, n− 1) ≥ c}.

Proof. First, I partition the possible values of c into two cases under the parameter restric-

tions of Theorem 3, using Lemma 2 below. Second, I separately derive the equilibrium

group size s∗ for these two cases. Finally, I show that interval Ck
n exists for given n when

k = 1 or k sufficiently large.
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Lemma 2. If p2 > max{1−p1, q}, then the values of gk(n, n−1) at n ≥ 2 are lexigoraph-

ically ordered; first strictly decreasing with n, then strictly increasing with k. That is for all

n ≥ 2 and k, k′ ∈ N, we have gk(n, n−1) < gk+1(n, n−1) and gk′(n+1, n) < gk(n, n−1).

Proof. First note that from p1 > p2, we have that p1 + p2 > 1 if and only if p1(1 − p1) <

p2(1 − p2). This implies p1(1 − p1)
n < p2(1 − p2)

n for all n ≥ 2. Therefore, by property

3, we know that gk(n, n− 1) is strictly increasing in k for any n ≥ 2.

Second, additionally assuming p2 > q implies gk(n, n−1) > gk′(n+1, n) for all n ≥ 2

and k, k′ ∈ N. The reason is as follows. Since gk(n, n − 1) is strictly increasing in k as

shown above, we have gk′(n+1, n) < limk→∞ gk(n+1, n) and gk(n, n−1) ≥ g0(n, n−1)

for all k, k′ ∈ N. Furthermore

lim
k→∞

gk(n+ 1, n) < g0(n, n− 1)

⇔ p2(1− p2)
n < qp1(1− p1)

n−1 + (1− q)p2(1− p2)
n−1

⇔ (q − p2)p2(1− p2)
n−1 < qp1(1− p1)

n−1

A sufficient condition for this inequality to hold is p2 > q. So for all n ≥ 2 and k, k′ ∈ N,

we have gk(n, n − 1) ≥ g0(n, n − 1) > limk→∞ gk(n + 1, n) > gk′(n + 1, n). We thus

obtain the second statement of the lemma.

Lemma 2 leaves us with two possible cases regarding cost c.12

Case 1: There is a unique ñ ∈ {1, ...N−1} such that c ∈
(
gN−(ñ+1)(ñ+ 1, ñ), g0(ñ, ñ− 1)

]
.

Case 2: There is a unique pair (ñ, k) with ñ ∈ {2, ...N − 1} and k ∈ {1, ..., N − ñ}

such that c ∈ (gk−1(ñ, ñ− 1), gk(ñ, ñ− 1)]

Next, I separately derive s∗ under these two cases.

Equilibrium in Case 1: First note that c ≤ g0(ñ, ñ − 1) implies c ≤ gk(n, n − 1) =

p(k+n)
1−F (k)

for all n ≤ ñ and all k by Lemma 2. By Lemma 1, this means sN−ñ+1(xN−ñ+1) = ñ

12There are two additional cases that are trivial and not discussed here: It is straightforward to see that

c > g0(1, 0) and c ≤ g0(N,N − 1) yield equilibrium group size s∗ = 0 and s∗ = N respectively.
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for all xN−ñ+1 ∈ {0, ..., N − ñ}. That is, the final ñ movers participate in equilibirium

regardless of the history.

Next, I show that all the earlier movers {1, ..., N − ñ} pass regardless of history. That

is, si(xi) = ñ for all i ∈ {1, ..., N − ñ} and all xi ∈ {0, ..., i − 1}. As shown above,

sN−ñ+1(xN−ñ) = sN−ñ+1(xN−ñ + 1) = ñ. Since Case 1 dictates that c > gxN−ñ
(ñ+ 1, ñ)

for all xN−ñ, we have by (IC ′
N−ñ,xN−ñ

) that Player N− ñ passes under any history. That is,

a∗N−ñ(N − ñ, xN−ñ) = 0 for all xN−ñ. Since this is true for any history, a∗1(N − ñ, 0) = 0

must hold on the equilibrium path. By Proposition 1(a), this means all previous players

i ∈ {1, ..., N − ñ− 1} pass as well, which yields

s∗ = s1(0) = sN−ñ+1(0) = ñ = max{n ∈ { 1, ..., N} : g0(n, n− 1) ≥ c}

where the last equality holds by Case 1.

Equilibrium in Case 2: For players i ∈ {N− ñ+2, ..., N} we have c ≤ gxi
(i, i−1) =

p(xi+i)
1−F (xi)

for all xi by Lemma 2. Then once again by Lemma 1, we have sN−ñ+2(xN−ñ+2) =

ñ− 1 for all xN−ñ+2.

For Player N− ñ+1, the case c ∈ (gk−1(ñ, ñ− 1), gk(ñ, ñ− 1)] implies the following:

In the continuation game, she knows sN−ñ+2(xN−ñ+1) = sN−ñ+2(xN−ñ+1+1) = ñ−1. By

Lemma 2 and Case 2, we have gxN−ñ+1
(ñ, ñ−1) is greater than c if xN−ñ+1 ≥ k and smaller

than c otherwise. Then by (IC ′
N−ñ+1,xN−ñ+1

) we have a∗N−ñ+1(N − ñ+ 1, xN−ñ+1) = 1 if

and only if xN−ñ+1 ≥ k. That is, participating is optimal of Player N − ñ + 1 if and only

if she follows a history of at least k past participants. This means

sN−ñ+1(xN−ñ+1) =

 ñ; xN−ñ+1 ≥ k

ñ− 1; otherwise

I derive the equilibrium actions of earlier players {1, ..., N − ñ} by induction.

Base Case: Consider player N − ñ under different histories:

If xN−ñ < k − 1, then sN−ñ+1(xN−ñ + 1) = sN−ñ+1(xN−ñ) = ñ − 1. Case 2 yields

c > gxN−ñ
(ñ, ñ− 1) for any xñ+1 < k. Therefore by (IC ′

N−ñ,xN−ñ
), Player N − ñ passes.

That is, a∗N−ñ(N − ñ, xN−ñ) = 0 for all xN−ñ < k − 1.
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If xN−ñ > k − 1, then sN−ñ+1(xN−ñ + 1) = sN−ñ+1(xN−ñ) = ñ. Case 2 yields

c > gxN−ñ
(ñ+ 1, ñ) for all xN−ñ. Therefore by (IC ′

N−ñ,xN−ñ
), Player N − ñ passes. That

is, a∗N−ñ(N − ñ, xN−ñ) = 0 for all xN−ñ > k − 1.

If xN−ñ = k− 1, then sN−ñ+1(xN−ñ) = ñ− 1 and sN−ñ+1(xN−ñ +1) = ñ. Therefore,

Player N − ñ participates if and only if c ≤ gk−1(ñ+1, ñ− 1). Since gk−1(ñ+1, ñ− 1) >

gk−1(ñ, ñ− 1), there is always a range of c within Case 2 where this holds.

We can summarize the optimal action of Player N − ñ as follows.

a∗N−ñ(N − ñ, xN−ñ) = 1 ⇔ xN−ñ = k − 1 ∧ c ≤ gk−1(ñ+ 1, ñ− 1) (5)

Inductive Step: Fix a player i ∈ {N − (ñ + k) + 1, ..., N − ñ − 1}. Suppose for all

j ∈ {i+ 1, ..., N − ñ} we have

a∗j(j, xj) = 1 ⇔ xj = k + ñ− (N − j + 1) ∧ c ≤ min {gk−l(ñ+ l, ñ− 1)}N−j+1−ñ
l=1

which is shown to hold for i = N − ñ − 1 in Equation (5). Our goal is to show that this

induction hypothesis implies

a∗i (i, xi) = 1 ⇔ xi = k+ ñ− (N − i+1) ∧ c ≤ min {gk−l(ñ+ l, ñ− 1)}N−i+1−ñ
l=1 (6)

The hypothesis yields that unless xi = ñ+k−(N−i+1) and c ≤ min {gk−l(ñ+ l, ñ− 1)}N−i−ñ
l=1

both hold, we have a∗i+1(i+ 1, xi + 1) = 0. By Proposition 1(a), this implies a∗i (i, xi) = 0.

If xi = ñ+ k− (N − i+1) and c ≤ min {gk−l(ñ+ l, ñ− 1)}N−i−ñ
l=1 both hold, we can

make the following observations.

(i) If Player i participates, we have xi+1 = xi + 1. Furthermore, we know by the

induction hypothesis that a∗i+1(i+1, xi +1) = 1. By Proposition 1(a), this implies all later

movers participate as well and we have si+1(xi + 1) = N − i.

(ii) If Player i passes, then we have xi+1 = xi = ñ + k − (N − i + 1). This means

xj < ñ + k − (N − j + 1) for all j ∈ {i + 1, ..., N − ñ}. Therefore, by the induction

hypothesis, these players all pass and we have si+1(xi) = ñ− 1.

From observations (i) and (ii), we can see that when xi = ñ + k − (N − i + 1) and

c ≤ min {gk−l(ñ+ l, ñ− 1)}N−i−ñ
l=1 both hold, the optimality condition (ICi,xi

) of Player

35



i is given by c ≤ gñ+k−(N−i+1)(N − i + 1, ñ− 1). This cost threshold can be obtained by

substituting (N − i+ 1)− ñ for l in gk−l(ñ+ l, ñ− 1).

Hence, we can summarize the necessary and sufficient conditions for a∗i (i, xi) = 1 as

xi = ñ + k − (N − i + 1) and c ≤ min {gk−l(ñ+ l, ñ− 1)}N−i+1−ñ
l=1 . This confirms that

the induction hypothesis implies equation (6).

Setting i = N − (ñ+ k) + 1, we get

a∗N−(ñ+k)+1(N − (ñ+ k) + 1, xN−(ñ+k)+1) = 1

⇔ xN−(ñ+k)+1 = 0 ∧ c ≤ min {gk−l(ñ+ l, ñ− 1)}kl=1

Note that Player N − (ñ + k) + 1 passes under any positive history. So if any of the

previous players participate, Player N − (ñ + k) + 1 will pass. By Proposition 1(a), this

implies that all previous players {1, ..., N−(ñ+k)} pass and we indeed have xN−(ñ+k)+1 =

0 on the equilibrium path. This, together with the optimality condition we derived for

players {N − (ñ+ k) + 1, ..., N − ñ} in the above induction yields

s∗ = s1(0) =

 ñ+ k; c ≤ min {gk−l(ñ+ l, ñ− 1)}kl=1

ñ− 1; otherwise

where ñ − 1 = max{n ∈ {1, ..., N} : g0(n, n − 1) ≥ c} by Case 2. Finally, since

gk−l(ñ + l, ñ − 1) is quasi-concave in l and c ≤ gk(ñ, ñ − 1) by Case 2, the condition

c ≤ min {gk−l(ñ+ l, ñ− 1)}kl=1 is equivalent to just c ≤ g0(ñ+ k, ñ− 1). The restriction

of c satisfying Case 2 and c ≤ min {gk−l(ñ+ l, ñ− 1)}kl=1can be summarized together as

c ∈ Ck
ñ, where Ck

ñ is given by

Ck
ñ :=

(
gk−1(ñ, ñ− 1),min{gk(ñ, ñ− 1), g0(ñ+ k, ñ− 1)}

]
When this restriction is violated, we have shown that s∗ = max{n ∈ {1, ..., N} : g0(n, n−

1) ≥ c}.

The final step of the proof is to show that for given n ∈ {2, ..., N − 1}, Ck
n exists when

k = 1 or k is sufficiently large. To show that Ck
n exists is to show that gk−1(n, n − 1) <
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min{gk(n, n−1), g0(n+k, n−1)}. We know by Lemma 2 that gk−1(n, n−1) < gk(n, n−

1). Thus, given n, the conditions for gk−1(n, n− 1) < g0(n+ k, n− 1) will be derived.

First note that this clearly holds for k = 1, since

g0(n, n− 1) = p(n) < p(n) + p(n+ 1) = g0(n+ 1, n− 1)

Thus, C1
n exists for all n ∈ {2, ..., N − 1}. For k > 1, we are looking for k such that the

inequality below holds

gk−1(n, n− 1)) =
p(n+ k − 1)

1− F (k − 1)

=
q(1− p1)

n+k−2p1
q(1− p1)k−1 + (1− q)(1− p2)k−1

+
(1− q)(1− p2)

n+k−2p2
q(1− p1)k−1 + (1− q)(1− p2)k−1

< g0(n+ k, n− 1)

= F (n+ k)− F (n− 1)

= q[(1− p1)
n−1 − (1− p1)

n+k] + (1− q)[(1− p2)
n−1 − (1− p2)

n+k)]

= q(1− p1)
n−1[1− (1− p1)

k+1] + (1− q)(1− p2)
n−1[1− (1− p2)

k+1]

Since p1 + p2 > 1 implies p1(1 − p1)
n−1 < p2(1 − p2)

n−1, we have gk(n, n − 1) <

p2(1 − p2)
n−1. That means gk−1(n, n − 1) < g0(n + k, n − 1) is satisfied for any k that

satisfies the following inequality

p2(1− p2)
n−1 − g0(n+ k, n− 1)

= p2(1− p2)
n−1 −

[
q(1− p1)

n−1[1− (1− p1)
k+1] + (1− q)(1− p2)

n−1[1− (1− p2)
k+1]

]
< 0

Note that the left-hand side of this inequality is continuous and strictly decreasing with

respect to k. Furthermore,

lim
k→∞

p2(1− p2)
n−1 −

[
q(1− p1)

n−1[1− (1− p1)
k+1] + (1− q)(1− p2)

n−1[1− (1− p2)
k+1]

]
= (1− p2)

n−1 [p2 − (1− q)]− q(1− p1)
n−1 < 0

where the inequality holds from the restriction p2 < 1 − q of Theorem 3. Thus, we know

that for sufficiently large k, we have gk−1(n, n − 1) < g0(n + k, n − 1). Hence, for any

given n ∈ {2, ..., N − 1}, interval Ck
n exists for sufficiently large k.
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Abstrakt 

Zkoumám faktory, které rozhodují o tom, zda sociální hnutí zdola dosáhne potřebné velikosti k dosažení 

svého cíle. Studuji problém kolektivní akce, kdy se stejní jedinci, kteří si cení společného cíle, postupně 

rozhodují, zda se k hnutí připojí. Model má dvě klíčové složky: (i) hnutí čelí problému „free-riding“ (tj. 

jednotlivci sice chtějí, aby hnutí uspělo, ale raději by, aby náklady na jejich účast nesli ostatní) a (ii) počet 

členů potřebný k dosažení úspěchu je ex ante neznámý, ale může být odhalen, jak hnutí roste. Hlavním 

poznatkem je, že zvýšení nákladů na účast, jako např. přísnější a pravděpodobnější tresty pro členy hnutí, 

může vést k prudkému nárůstu počtu členů. 
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