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Abstract

This paper studies convergence properties, including local and global strong E-stability, of
the rational expectations equilibrium under non-smooth learning dynamics. In a simple New
Keynesian model, we consider two types of informational constraints operating jointly - adaptive
learning and sparse rationality. For different initial beliefs, we study if the convergence to the
minimum state variable rational expectations equilibrium (MSV REE) occurs over time for positive
costs of attention. We find that for any initial beliefs the agents’ forecasting rule converges either
to the MSV REE equilibrium, or, for large attention costs, to a rule that disregards all variables
but the constant. Stricter monetary policy slightly favors the constant only rule. Mis-specified
forecasting rule that uses variable not present in the MSV REE does not survive this learning
algorithm. Theory of non-smooth differential equations is applied to study the dynamics of our
learning algorithm.
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1 Introduction

1.1 Sparse Adaptive Learning

Modelling agents’ expectation formation in self-referential systems has been extensively debated in
the literature. The debate has received a different angle when increased computer power and data
availability simplified the tasks of dimensionality reduction and variable selection.1 In a dynamic
self-referential system, the choice of variables in the forecasting models affects the system itself. A
vast Adaptive Learning (AL) literature2 has studied the conditions under which such a system of
forecasting models converge to a true underlying model. The convergence has been shown to depend
on the stability of ordinary differential equations characterizing the underlying model, and the concept
has been named Expectational-, or E-stability.

In this paper, we contribute to the AL literature by addressing the global stability of the Rational
Expectations Equilibrium (REE) taking into account a non-smooth learning algorithm, where the
agents start with a mis-specified forecasting rule and can switch model specification during learning.
We study the dynamics of a simple New Keynesian model with boundedly rational agents, who operate
under a combination of two types of information constraints: Recursive Least Squares (RLS) learning,
with the agents updating their beliefs about the coefficients in their forecasting rules, and Sparse
Rationality, which imposes costs on the attention weights of different variables in the forecasting rule,
thus selecting variables to be used in the rule. We call this algorithm Sparse Adaptive Learning
(Sparse AL). We are interested in the dynamics of the model, which starts with initial beliefs that are
significantly different from those consistent with the Minimum State Variable Rational Expectations
(MSV REE) equilibrium developed by McCallum (1983, 2003). In particular, motivated by Audzei
and Slobodyan (2022), we let our agents start arbitrarily close to the ”wrong” Restrictive Expectations
Equilibrium (RPE), in which case the initial forecasting rule includes a variable that is absent from
the MSV REE solution. If convergence to the MSV REE solution occurs for arbitrary initial beliefs,
one could speak of global - as opposed to local, or asymptotic - strong Expectational Stability of the
MSV REE with respect to the RPE forecasting rules under a sparsity information constraint. We also
derive the extended version of the E-stability condition for our Sparse Adaptive Learning set-up, and
investigate consequences of the relative speed of adjustment of the beliefs and of the attention weights
on the convergence properties of their joint dynamics. We further consider the role of monetary policy
in the model dynamics and the equilibrium selection.

The Sparse Rationality approach formulated in Gabaix (2014) is a type of penalized regression,
1Examples include principal components analysis: Stock and Watson (2002), dynamic factor models: Banbura et al.

(2013), Stock and Watson (2016)), and active spaces or penalized regressions: see Hansen and Liao (2019), Korobilis
(2013), and Nazemi and Fabozzi (2018). A systematic way of using many variables in econometric and forecasting models
is represented by many variants of penalized regressions, including Ridge, Lasso, elastic nets, etc,: see Gefang (2014),
Tibshirani (1996), De Mol et al. (2008), or Yuan and Lin (2007). See also Andrle and Bruha (2023) for sparse Kalman
filter estimation.

2For an overview of Adaptive Learning literature in macroeconomics see Evans and Honkapohja (2001).
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specifically a non-negative garrote. A penalized regression minimizes loss function that consists of the
sum of squared prediction errors plus a penalty term. In garrote the penalty is imposed on the sum of
absolute values of attention weights on different variables. Solving the problem of minimizing the loss
function leads to derivation of optimal attention weights, some of which could be zero, thus inducing
sparsity. The penalty could then be interpreted as the cost of attention that comes from cognitive
limitations or cost of data collection.

We model our agents as engaged in Sparse AL, constantly updating their estimates of the forecast-
ing rules (beliefs and attention weights) using an expanding window of the data and Recursive Least
Squares (RLS).3 The estimates are then used to form expectations of the future values of macroe-
conomic variables and the agents’ actions which affect future realizations of data. The process of
expectations formation then becomes self-referential. With Sparse AL, the agents are not only updat-
ing the regression estimates, but are also constantly making a decision on the amount of attention to
be paid to different variables, thus adding another mechanism into the usual self-referential feedback
loop studied in the adaptive learning literature.

We find that MSV REE is generally strongly E-stable under Sparse AL. However, for larger values of
the attention cost or more aggressive monetary policy, the forecasting rules consisting of the constant
only could become stable. Thus, the monetary policy could affect what variables the agents pay
attention to, in line with the findings of Audzei and Slobodyan (2022). In contrast to that paper,
however, we find that the area in the parameter space consistent with the MSV REE forecasting rule
is significantly larger once we allow for learning dynamics under attention costs constraints. We also
find that allowing for learning under Sparse Rationality asymptotically eliminates the RPE, which
turns out to be very fragile to the introduction of extra variables.

1.2 Literature Review

This paper is related to a large strand of literature on AL and its interaction with monetary policy.
A summary of the AL approach is provided in Evans and Honkapohja (2001). Seminal contributions
related to interaction with monetary policy include Orphanides and Williams (2007), who studied
the robustness of monetary policy rules when agents are learning. The monetary policy analysis in
our paper is related more to the studies that address how monetary policy affects the learnability
and stability of the equilibria under the learning process: see Mele et al. (2020), Bullard and Mitra
(2002), Slobodyan et al. (2016) and Gibbs (2017). In these studies, the learnability and stability of a
desired equilibrium is viewed as additional desiderata for a monetary policy rule. We further relate
to the studies on survival of mis-specified equilibra in self-referential systems. Evans et al. (2012)
showed that the convergence to a mis-specified equilibrium occurs when the feedback parameter on
the expectations is strong. A similar conclusion was obtained by Adam (2005), Hommes and Zhu

3A variety of other variants is possible, such as Constant Gain learning, Kalman Filter learning, etc.
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(2014), Hommes (2014) Branch et al. (2022) and Hajdini (2022), but under different formulations
of mis-specification and learning process. In Audzei and Slobodyan (2022) we have shown that the
stronger monetary policy response to inflation, which is inversely related to the expectational feedback
parameter, makes the survival of a mis-specified equilibrium less likely. We contribute to this literature
by adding the variable selection and sparsity considerations to Adaptive Learning, and by studying
the global (Sparse) E-stability of the resulting dynamic system.

Our formulation of the initial mis-specified equilibrium is inspired by empirical and theoretical
literature on RPE. Studies have demonstrated that models with the forecasters using simple prediction
rules for inflation outperform those with the complicated rules in survey and experimental settings: see
Branch and Evans (2006), Adam (2007), Hommes (2014), and Pfajfar and Žakelj (2014). Related to
the model behavior at the effective lower bound, Ascari et al. (2023) show that combining the RPE and
bounded rationality helps to restore the uniqueness of an equilibrium. In the context of estimated New
Keynesian models, Slobodyan and Wouters (2012a and 2012b), Audzei (2023), Ormeno and Molnar
(2015) and Vázquez and Aguilar (2021), showed that assuming agents use very simple forecasting rules
leads to superior model fit in estimated DSGE models under adaptive learning than REE.

In our framework agents’ dynamic decisions on including or excluding the variables from the fore-
casting rules could introduce discontinuity into the model dynamics when the set of included variables
changes. This possible discontinuity forces us to rely on the theory of non-smooth differential equa-
tions, see Filippov (1988) and Jeffrey (2019). In addition to the standard convergence of the learning
dynamics, sliding dynamics along the boundary where the agents are indifferent between two differ-
ent forecasting rules could be observed. The appearance of sliding affects convergence properties of
different equilibria.

The paper is structured as follows. We start by describing the model setup and the existence
and stability of MSV and an initially mis-specified RPE under AL with expert advice in Section 2.
We continue with formulating the sparsity problem of agents choosing variables’ attention weights
in Section 3. We further study the dynamics of the AL under sparsity, in particular the stability
and learnability of different equilibria in Section 4, where we also address the global E-stability of
MSV REE using the theory of non-smooth differential equations. We demonstrate analytically how
the non-smooth dynamics allows us to compare the model dynamics under fast and slow updating of
underlying variable selection in Section 5. Section 6 concludes.

2 The Model
Our model is a standard New Keynesian (NK) model in which consumer utility possesses external
habit persistence and a central bank reacts to the deviation of expected inflation from the zero inflation
target. The model has been studied extensively; therefore we present below the key equations and
leave the detailed derivations to the Appendix A. The model is a three equations NK model, with the
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following equations:

yt = − 1− h

(1 + h)σ
(it − Etπt+1) +

1

1 + h
Etyt+1 +

h

1 + h
yt−1 + gt, (1)

πt = βEtπt+1 + ωyt + ut, (2)

it = ϕπEtπt+1. (3)

Here π is inflation and y the output gap, while the shocks u and g are both i.i.d. zero mean random
variables with finite variances. The first equation is an investment-savings curve, the second is a new
Keynesian Phillips curve, and the last is the central bank reaction function.

We plug the central bank’s policy rule (3) into (1)-(2) and rearrange to express the dynamics of
inflation and output as a function of their lagged and expected values and shock realizations:

yt = − 1− h

(1 + h)σ
(ϕπ − 1)Etπt+1 +

1

1 + h
Etyt+1 +

h

1 + h
yt−1 +

1− h

(1 + h)σ
gt, (4)

πt =

(
β − ω(1− h)(ϕπ − 1)

(1 + h)σ

)
Etπt+1 +

ω

1 + h
Etyt+1 +

ωh

1 + h
yt−1 +

ω(1− h)

(1 + h)σ
gt + ut. (5)

To reduce the dimensionality of the problem we assume that agents are only uncertain about
inflation dynamics. The forecast of the output gap is obtained in the spirit of Molnar (2007) from
outside experts, who posses full knowledge of the system in (4)-(5) and agents’ beliefs as described
below.

2.1 Expert Forecasts of Output Gap

Following Molnar (2007), we assume that the agents have access to the expert advice on output gap
forecasts. These experts are fully aware of the structure of the model and underlying parameters, and
make forecasts given agents’ inflation beliefs.

In Appendix B we characterize the dynamics of output and inflation as a function of expectations
of the output gap, given the agents’ beliefs about inflation. As experts are fully rational, we solve for
their output gap forecasts using the method of undetermined coefficients. As a result, the forecast of
the output gap can be written as

Etyt+1 = γ̃yyt−1 + γ̃ππt−1 + γ̃uut + γ̃ggt, (6)

where the coefficients are functions of the agents’ inflation beliefs defined in (B37)-(B40) and (B41)-
(B44).
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With these output gap expectations, we can re-write the model in (4)-(5) as follows:

yt = − 1− h

(1 + h)σ
(ϕπ − 1)Etπt+1 +

γ̃π
1 + h

πt−1 +
h+ γ̃y
1 + h

yt−1 +
1− h+ σγ̃g
(1 + h)σ

gt +
γ̃u

1 + h
ut, (7)

πt =

(
β − ω(1− h)(ϕπ − 1)

(1 + h)σ

)
Etπt+1+ (8)

γ̃πω

1 + h
πt−1 +

ω(h+ γ̃y)

1 + h
yt−1 +

ω((1− h) + σγ̃g)

(1 + h)σ
gt + (

ωγ̃u
1 + h

+ 1)ut.

The agents’ forecasting rules in this paper could be consistent with the MSV REE and only use the
output gap, be based on the Restricted Perceptions Equilibrium (RPE) and thus include only inflation,
or they could be formed as some linear combination of these two beliefs. We nowproceed to discuss
the properties of the relevant equilibria.

2.2 Minimal State Variable Solution

Having defined the forecast of the output gap we begin our analysis by defining and studying the
properties of MSV REE solution for inflation. At MSV, the agents’ beliefs about the inflation - their
Perceived Law of Motion (PLM), contain only the state variable: output gap and observed shocks.
Such beliefs are given by:

πt = cyπyt−1 + γyπgt + ut, (9)

yt = cyyyt−1 + γyygt, (10)

with the coefficients derived in Appendix C.
When the agents are using the MSV functional form to formulate their PLM4 and then use the

RLS learning algorithm to learn the coefficients in their PLM, the dynamics of their currently assumed
coefficients (beliefs) is asymptotically governed by the approximating ordinary differential equation
(ODE). Asymptotic stability of a stationary point of this approximating ODE, or E-stability, is related
to the convergence of the agents’ beliefs to their MSV REE values: see Evans and Honkapohja (2001)
and further elaboration in the Appendix C. We show in Appendix C.1 that the MSV REE is weakly
E-stable as long as the Taylor principle is satisfied, ϕπ > 1.5

In this paper we are mostly interested in a form of global strong E-stability concept of the MSV
solution. The weak E-stability just described guarantees only that if the agents’ forecasting rule has the
same functional form as the MSV solution, and the values of coefficients they believe in are contained
in some small neighborhood of the MSV values initially, then under appropriate assumptions the RLS

4We are using mixed dating. When the agents form expectations and thus assume that only yt−1 matters for forming
forecasts of future inflation and output gap, given that the shocks are assumed to be i.i.d.

5For a very persistent output dynamics, as shown in the Appendix C.1, the condition on ϕπ is stricter than the usual
Taylor principle.
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learning will converge to MSV REE with a probability approaching 1, see Evans and Honkapohja
(2001). This result leaves two unanswered questions. First, what happens if the initial forecasting
rule contains more variables than the MSV set? Will the agents asymptotically learn that the value
of extraneous coefficients in the PLM are zero? In other words, does the strong E-stability obtain?
And second, what happens if the initial beliefs are far away from the MSV ones: will we still observe
convergence? In other words, is the weak or strong E-stability not just local (asymptotic), but global?

Contrary to the weak E-stability, a strong E-stability concept is not unique. It is defined only with
respect to the specific mis-specification of the PLM from which the learning is assumed to begin. The
Appendix C.1 derives conditions under which the strong E-stability obtains when the agents allow
another endogenous variable, π, to be present in their PLM. If the sufficient condition for the weak
E-stability is satisfied, strong E-stability obtains as well. With strong E-stability, the beliefs will still
converge to the correct MSV REE beliefs and the agents will learn that the inflation doesn’t belong in
their PLM; this is guaranteed to occur when the initial beliefs are sufficiently close to the MSV REE
ones, and thus the intial beliefs about inflation are close to zero.6

In order to answer the second question, we will consider agents’ initial beliefs that are as far away
from the MSV as possible, while still resembling the MSV functional form. To do so, in the next
subsection we first derive the Restricted Perceptions Equilibrium, where the ’correct’ variable from the
MSV is not present at all while the agents forecast using the variable that is irrelevant in the MSV,
and then initialize the agents’ beliefs in a small neighborhood of the RPE-consistent values.

2.3 Restricted Perception Equilibria

We restrict the agents to use only one endogenous variable in their forecasting models - either a lag of
inflation or a lag of output gap. Under the assumption of i.i.d. shocks the agents then choose between
two models, based on their forecasting performance:

πt = απ
π + βπ

ππt−1, (11)

πt = αy
π + βy

πyt−1, (12)

with the coefficients determined by the respective regressions. We call the mis-specified rule in (11)
Mπ, and the MSV-consistent one in (12) is denoted My.7 The equilibria induced by these forecasting
rules are also called Mπ and My.

The choice of forecasting model influences the dynamics of the model through the expectational
term. When the agents are using the ’incorrect’ set of variables for forecasting, due to the self-referential

6The agents could have included n lags of output gap and k lags of inflation into their PLM, which would have resulted
in different strong E-stability conditions.

7We call My an MSV-consistent rule because it uses the same endogenous variable as the MSV REE. The equilibrium
My has the same dependence on the lagged output gap as the MSV REE; therefore in what follows we use ’MSV-
consistent’ and ’MSV REE’ interchangeably.
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nature of the beliefs the resulting Restricted Perceptions Equilibrium is skewed, and it could happen
that the forecasting errors are smaller than they would have been had the agents used the ’correct’
variables in this skewed RPE. As the focus of this paper is on initially mis-specified beliefs, we are
interested in the conditions under which Mπ can be an equilibrium, that is, when this equilibrium is
E-stable and the forecasting rule (11) has better ex-post forecasting performance than rule (12).

The Actual Law of Motion (ALM) when the agents are using the Mπ forecasting rule is given by
the following equations, with the coefficients defined in Appendix D in equations (D73)-(D80):

πt = āπ + b̄ππt−1 + c̄πyt−1 + η̄gπgt + η̄uπut, (13)

yt = āy + b̄yπt−1 + c̄yyt−1 + η̄gygt + η̄uyut. (14)

We measure the forecasting performance of rules Mπ and My by the mean squared forecast errors
(MSFE). We define the error term for MSFE criterion as E(πt − π̂t)

2, where πt is given by the above
ALM under the condition that all agents’ were using (11) to form the expectations. That is, the agents
live in equilibrium (13)-(14) induced by the PLM (11), and then an atomistic agent ex-post assesses
the forecasting performance of alternative rules given the realized inflation over which they have no
influence, being measure zero agents.

Proposition 2.0.1 For the model described in (4-5), Mπ equilibrium in (11) is 1) E-stable under
condition (D100); 2) Mπ produces MSFE that is smaller than My MSFE when condition (D105)
holds.

The existence and stability of this RPE is proven in Appendix D.
Until this point the agents did not experience information friction related to the cost of paying

attention. We now turn to the attention constraints as in Gabaix (2014) and study how they affect
the adaptive learning dynamics and stability.

3 Sparse Rationality under Adaptive Learning
Next, following Audzei and Slobodyan (2022), we initiate the agents’ beliefs to be in the small neighbor-
hood of the Mπ-consistent ones and allow them to reconsider the variable choices subject to attention
constraints à la Gabaix (2014). We are interested in the dynamics of beliefs and the equilibrium
they converge to. Will the agents using RLS eventually learn that the coefficient on π is zero, and
converge to the MSV-consistent equilibrium? If the answer is Yes, then we are talking about global
strong E-stability. As was shown above, when agents do not face attention costs the asymptotic strong
E-stability for the MSV REE is obtained when the condition (C60) is satisfied. The numerical analysis
in the next section supports the global convergence for zero attention costs.8 But what happens if the

8Outside of the MSV REE, the approximating Strong E-Stability ODE is nonlinear; therefore we cannot prove
analytically that the convergence is global.
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attention is costly? The agents start very far from the MSV REE beliefs and follow the RLS learning
algorithm augmented with the rule for adjusting attention: Will they eventually arrive at the MSV
solution? In other words, we want to study the global strong E-stability with positive attention costs.

The Sparse Rationality concept, introduced by Gabaix (2014, 2017) considers the following decision
problem. Suppose an agent wants to minimize a loss function associated with some action, with the
action being costly. If the loss function is given as a sum of squares of forecast errors from a linear
forecasting problem, and the cost of action is a function of the regression coefficients of this regression,
this problem is that of penalized regression. Depending on the functional form of the penalty, the
regression is known as LASSO (the penalty is proportional to the sum of absolute values of coefficients),
ridge (the penalty as sum of squared coefficients), or elastic net (a mixture of the two). The penalty
term could be interpreted as the sum of costs of paying attention to the variables due to information
or data collection efforts.

Gabaix (2014) formulates the decision problem as follows. Suppose that the agents obtain the
regression coefficients in their PLM by the usual OLS regression or a linear projection of the response
variable y on a set of regressors x:

yt = b̂1x1,t−1 + ...+ b̂nxn,t−1 + ϵt. (15)

They then form forecasts as ŷt = b̂1m1x1,t−1+...+b̂nmnxn,t−1, with mi being the attention weight allo-
cated to the variable xi. The agents then maximize the quality of their forecast: u = − 1

2E
[
(ŷt − yt)

2
]
,

subject to attention costs κ
∑

i,j=1...n

|mi|. The optimal attention vector m is thus obtained as a solution

of the following problem

m∗ = arg min
m∈[0,1]n

{
1

2
E
[
(ŷt − yt)

2
]
+ κ

∑
i=1...n

|mi|

}
, (16)

The problem (16) is known as (non-negative) garrote, and the weights could take any value between
0 and 1. Specifying the penalty term as the sum of absolute values assures that the corner solutions
with attention weights of 0 and 1 are possible; this is equivalent to a variable being excluded from and
included into the forecasting rule, respectively. Minimizing the loss function with an attention cost
penalty is then akin to running a classic model selection exercise; however, it is also possible to pay
partial attention to a variable when 0 < mi < 1.

We now allow the agents to continue learning adaptively, taking into account the attention cost.
As is usual in the adaptive learning literature, they run Recursive Least Squares (RLS) in order to
adjust the values of beliefs β and of the second moments of the explanatory variables R, according to
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equations (17-18):9

βt = βt−1 + t−1 ·R−1
t · zt−1 · (T (βt−1)

T

· zt−1 + ηt − βT
t−1 ·mt−1 · zt−1)

T , (17)

Rt = Rt−1 + t−1 · (zt−1z
T
t−1 −Rt−1), (18)

with zt = [πt−1, yt−1]
′, and πt = T (βt−1) the realized value of inflation (13) given agents beliefs (11).

However, in addition to the standard RLS, they also recompute the optimal attention weights m∗,
and adjust their current weights m towards the optimal values, as in equations(19)-(20). We call this
combination of usual Adaptive Learning and Sparse Rationality a Sparse AL.

mt = mt−1 + nt−1 · (m∗
t −mt−1) , (19)

m∗
t = G (ϕt−1,mt−1, Rt−1) . (20)

The last equation describes the solution obtained in (16). The approximating ODE from this procedure,
then, is given by the equations (21) below.

·
β = T (β ·m)− β ·m,
·
R = Σ−R,

·
m = n · (G (ϕ,m,R)−m) .

(21)

Following Evans and Honkapohja (2001), section 6.2.2, one could interpret this ODE as the agents
fixing the parameters of their forecasting rules - β, R, and m - and observing the errors on the right-
hand side of (19) for a very large number of periods. Then, they average these right-hand side terms,
and make an infinitesimal step in the direction of the average value. Fixing n = 1 in (19) then implies
that the agents adjust their beliefs, β and R, as often as the attention weights m, while n < 1 means
a less frequent adjustment of the attention weights than of the beliefs.

4 Dynamics of Sparse AL
In Audzei and Slobodyan (2022) we showed that there exists a large region of parameter values in
which the Perceived Law of Motion used by the agents to forecast future values of the inflation and
output gap, which includes only the ’wrong’ variable’s lag, π, induces the Mπ RPE. This is so because
in this equilibrium the ’wrong’ PLM in terms of the forecasting performance could dominate the
MSV-consistent PLM with the ’correct’ variable y.

9Please note that in order to use a shrinkage estimator, we standardize the variables: to demean and divide by their
standard deviations. In our dynamic analysis we standardize the variables by dividing by their endogenous mean and
standard deviation before calculating weights.
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The agents populating this RPE could observe that there was another variable present in the model,
namely the output gap y. It further became feasible for them to include this variable into their PLM.
However, there were still constraints on the way variables were included into the PLM, expressed as
the attention cost in (16).10 We showed in Audzei and Slobodyan (2022) that solving this penalized
regression problem might confirm the agents’ initial mis-specified guess, and so they would continue
including only the inflation π into their forecasting rule. In terms of the attention vector, the solution
was (mπ,my) = (x, 0), with 1 ≥ x > 0. Therefore, the study concluded that it was possible for
the ’wrong’ RPE to survive the challenge of a single run of the penalized regression (16) and thus to
become self-confirming. However, for some other combinations of penalty and aggressiveness of the
Taylor rule, a positive weight on the output gap was indeed optimal.

In this paper we allow the agents to update their beliefs regarding the proper set of variables to be
included into the forecasting rule as they run a Sparse AL algorithm, and investigate the convergence
properties of the resulting dynamics.

4.1 Convergence to the MSV REE

Figure 1: Attention Weights

Initial Attention Weights Final Attention Weights

Figure 1 presents the start and end points of such learning dynamics for different values of the
attention cost κ and the policy rule’s aggressiveness ϕπ. The left panel presents initial weight, obtained
by a single application of the penalized regression (16) in the RPE Mπ. When the attention costs are
zero, or close to zero, the agents initially choose (mπ,my) = (1, 1) to pay full attention to both

10Audzei and Slobodyan (2022) motivated initial restrictions as limits to process information; they motivated lifting
these limitations with an improvement in computing or data collection technologies
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variables - black squares in the figures. There is a wide region of the parameter space at the lower
values of ϕπ where the initial weights are consistent with the RPE, (mπ,my) = (1, 0), pink asterisks.
Here, the restricted choice of the variables in the forecasting rule - only π - is reconfirmed by sparse
rationality. This region is located at intermediate values of the attention costs and low to medium
aggressiveness. For low values of attention cost as well as for intermediate κ combined with higher ϕπ,
both the inflation and output gap tend to have non-zero (yellow area) weights. Also, for even higher
attention costs, especially when the Taylor rule is very aggressive, the agents tend to disregard both π
and y and forecast inflation as a constant – either long-term inflation or inflation target, both equal to
0 in our model, red area. Finally, the highest values of the aggressiveness by the central bank leads to
the RPE Mπ forecasting rule producing worse forecasts than the alternative My one; thus RPE does
not exist in the area of green squares. Notably, the MSV-consistent equilibrium is never an optimal
solution. At best, the agents give some weight to the ’correct’ variable (output gap), but they never
replace the ’wrong’ (inflation) with the ’correct’ variable. However, this is only a static outcome.

We next let our agents take the coefficients from RPE ALM (13)-(14) as their starting beliefs β
and R, and the computed optimal weights as the starting attention weights. Thus, their initial PLM
is equivalent to the ALM obtained under the RPE Mπ.11 We then trace the approximating ODE for
a sufficiently long time12 and observe the final beliefs and weights. The final weights are significantly
more uniform than the initial ones. The weights converge to the MSV REE (blue area) for a wide range
of parameters, to the constant only forecasting rule (red area), or are on the way towards the constant
only rule (yellow area). The RPE Mπ does not survive for any combination of the parameters (ϕπ, κ).
Naturally, convergence to the constant only rule is observed for high values of κ, while the MSV REE
is the limit point for lower values of the attention costs. Convergence to the MSV is observed even
for many initial points, with the output gap weight equal to zero. Thus, the agents who are allowed
to continue learning, while taking into account the attention penalty, are still able to learn the true
equilibrium, unless the attention cost is too high. With stricter monetary policy, agents switch to the
constant only rule for smaller κ. The reason for this is lower volatility of inflation and output and
lower benefits of paying attention to these variables given attention costs.

Our results do not depend on assuming that the recursive penalized regression learning process
starts by taking the RPE Mπ ALM as the agents’ PLM. Even if the agents take the PLM they hold
at the RPE as the starting point, the eventual outcome of learning is still the MSV (0,1) for those
pairs (ϕπ, κ) where we observe convergence to MSV starting from the ALM RPE beliefs. These two
exercises suggest that not only could the MSV-consistent equilibrium be strongly E-stable under the
attention cost constraint, as we start from over-parametrized PLM, but also that it could be globally
E-stable in a large region of the parameter space, with the initial beliefs very far from the MSV ones.

11f one or both weights are equal to zero, for technical reasons we initiate them with a small positive number ϵ, as
otherwise computation of the matrix Σ in (D94) becomes impossible.

12We typically use T=30, which in the case of a small constant gain g = 0.01 is equivalent to 3,000 periods. In the
case of RLS with gains gn = 1/n, continuous time of 30 is equivalent to 1e+13 periods.
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In particular, in the second exercise the agents start by having almost zero beliefs in the correct MSV
variable y and positive beliefs in the incorrect variable π that is absent in the MSV solution, and still
converge to it.

Finally, we have to comment on the relationship between E-stability of the RPE, established by
Audzei and Slobodyan (2022), and the strong E-stability of the MSV described above. In the RPE,
the agents include only the inflation variable into their forecasting rule. The approximating ODE
that allowed us to establish E-stability of the RPE is thus 1-dimensional in the beliefs (β) space. In
contrast, once the agents start learning subject to attention costs, they explicitly take into account
that there could be two variables in their PLM, and thus the approximating ODE is 2-dimensional in
β space. In addition, there are dynamics in the m space which weren’t present in the analysis of RPE
E-stability. In other words, the nature of the dynamic adjustment of beliefs (and attention weights)
changes dramatically, in particular through expansion of dimensionality. Even if the initial belief on
output in the agents’ PLM is zero, they still could move in that dimension, while during convergence
to the RPE the βy dimension didn’t exist.

We now turn to discussion of the thin yellow wedge on the final weights figure, which exhibits
rather non-trivial dynamics with switching of the forecasting rule’s functional form.

4.2 Sliding dynamics

The approximating ODE trajectories converging to the red (constant only) or blue area (MSV) are
rather simple in terms of the optimal attention weights evaluated along the trajectory: they are either
(0,0) or (0,1) throughout the whole trajectory, respectively. In this case, the actual attention weights
are adjusted monotonically to their limit values. In particular along the trajectory converging to the
MSV REE, the weight on inflation mπ declines while the weight on output gap my is monotonically
increasing. The lower left panel of Figure 2 shows the optimal weights, and the upper right panel
the actual attention weights that the agents hold while they are adjusting towards the (0, 1) limit.
Asymptotically the total impact of the output gap on the agents’ inflation forecast, my ·βy, upper left
panel, is the same as the corresponding value at the MSV REE despite the attention costs. The agents
pay the costs but still prefer to use the correct forecasting rule and the correct coefficient in it. The
lower right panel shows that the corner solution (0, 1) remains optimal (violet asterisks) throughout
the whole trajectory.

Similar dynamics are observed for most trajectories that converge to the (0, 0) limit weights: the
corner solution (0, 0) remains optimal for the whole duration of the simulation. However, there are
other types of trajectories that exhibit a switching behavior of the optimal solution in the attention
weights space, and we now turn to the detailed discussion of these solutions. These are the trajectories
converging to the yellow circles and yellow diamonds, see Figure 3 for an example. At some point
along the trajectory around t=2.5, the value of the objective function in (16) obtained for the MSV-
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Figure 2: Convergence of weights and beliefs
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The figure illustrates the convergence of weights to MSV REE consistent values for attention costs κ = 0.06 and
monetary policy reaction to inflation ϕπ = 1.29. Continuous time units of the approximating ODE are on the

horizontal axis. Convergence to MSV REE.

consistent weights, V(0,1), becomes equal to the value generated by the constant only weights, V(0,0).
After this point, the monotonic convergence to the MSV weights is replaced with a convergence to
the constants only rule (0, 0). The switch is best seen in the lower right panel of the Figure 3: Before
t ≈ 2.5 it is the (0,1) solution that produces the minimal value (violet asterisks), but after this time
it’s the (0,0) solution which becomes the best (orange asterisks).

The points where such a situation happens form a surface in the (β,R,m) space. At one side of
the surface, we have V(0,0)>V(0,1), while at the other side the opposite situation takes place. The
optimal weights, respectively, are (0,1) and (0,0). From the ODE for attention weights (21) we then
see that the right-hand side in the equation for my is discontinuous at this boundary. Importantly, it
could happen that due to this discontinuity the flow described by (21) points back to the boundary on
both sides of it, making it intuitively clear that locally the ODE trajectories will be attracted to the
boundary.

In order to study the dynamics in this case, we need to turn to the theory of non-smooth differential
equations described in Appendix E. As is described there, a sliding dynamic could occur along the
boundary on which the two solutions to the problem (16) give exactly the same value. This happens
when the flow described by (21) points in the direction of the boundary on both sides of it, making
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Figure 3: Convergence of weights and beliefs
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The figure illustrates the convergence of weights to (mπ ,my) = (0, 0) for selected values of attention costs κ = 0.13 and
monetary policy reaction to inflation ϕπ = 1.29. Continuous time units of the approximating ODE are on the

horizontal axis. Convergence to constant only forecasting rule.

possible a stable trajectory that lies entirely within the boundary for some time interval.
In our case, we observed several types of the trajectories encountering the boundary between the

solutions (mπ,my) = (0, 0) and (0, 1). Two were the most common. The first type encounters the
boundary, punches through it (the scalar product of projections of the flow on the normal to the
boundary from two sides is positive), and continues evolving according to the ODE (21) towards the
constant only forecasting rule. These are the yellow diamonds in Figure 1. Another type encounters
the boundary and settles into the sliding dynamics as the scalar product of projections on the normal
is negative, eventually converging to the constant only forecasting rule. All points represented by
the yellow circles in Figure 1 denote such dynamics. Occasionally, a trajectory that first punched
through the boundary, then encountered it for a second time and settled for the sliding dynamics, was
observed. We also encountered a few trajectories whereby the sliding dynamics ended before time T
and the trajectory then continued along the non-boundary ODE (21). Up to three episodes of sliding
could occur along the convergence trajectory for some parameter values.

Importantly, no trajectories that encountered the boundary were observed to converge to the MSV
REE attention weights, whether or not the trajectory was converging to the MSV before the encounter.
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4.3 The Slow Weights Learning Case and Non-Smooth Dynamics

The case n = 1 assumes that the agents update attention weights with the same speed as their OLS
beliefs. One, however, could entertain different hypotheses. Generally speaking, reconsideration of the
set of variables to be included into the forecasting rule and of the attention weights for different variables
is a significantly more complex task than updating R, computing its inverse and multiplying it by the
forecast error to get the iteration of β. Determining optimal weights is a constrained optimization
problem that in a multi-dimensional case requires comparison of multiple corner solutions. Therefore,
it may make sense for the agents to reconsider their weights less frequently than their OLS beliefs.
This would then amount to n≪ 1 in the updating equations (20-21).

We present the results of the relatively slow learning of attention weights (n = 0.01) in Figure
4. The left panel shows the final weights, while on the right we show the difference with the results
for n = 1. Blue points are the parameters’ values for which in the case n = 1 we had convergence
to the MSV REE, but with n = 0.01 the constants only forecasting rule is the final outcome. All of
these trajectories that have switched the final attention weights are those that encounter the boundary
between (0,1) and (0,0) solutions along the way. In order to understand this behavior we look carefully
into a simplified version of the model dynamics.

Figure 4: Attention Weights
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In order to generate the intuition for the results on the slow sliding dynamics we inspect the
equations (21) and see that what matters for the dynamics of both beliefs and attention weights are
the element-wise products of attention weight and beliefs β ∗m, which are the total effects of the two
variables (mx · βx) on the overall inflation forecast. For the trajectories where the optimal attention
weight on inflation, mπ, remains equal to 0, only the impact Ψy = my · βy matters. Therefore, in

16



order to simplify the exposition we switch our attention to the dynamics in a two-dimensional space
x = (my, βy).13 The ODE (21) in this space is given by the following equations:

β̇y = c̄π − βy ·my,

ṁy = n ·
(
m∗

y −my

)
.

(22)

In this space, the boundary between the two corner solutions (0,0) and (0,1) is given as the solution
to the equation V (0, 0) = V (0, 1) which is Ψy = my · βy = Ψ̄y, a hyperbola in the two-dimensional
space (my, βy). Using notation from Appendix E, the equation for the boundary is

σ(my, βy) = my · βy − Ψ̄y = 0.

The discontinuity above and below the boundary comes from the fact that the optimal solution for
my is either 0 or 1 at different sides of it. For σ(my, βy) below the boundary, m∗

y = 1 while above the
boundary m∗

y = 0.14 Write the time derivative of σ as

σ̇ = ˙(my · βy) = ṁy · βy + β̇y ·my

=
(
c̄π − Ψ̄y

)
·my + n ·

(
m∗

y −my

)
.

The first term in the last line is always positive, while the second is negative above the boundary,
where m∗

y = 0, and positive below it, because m∗
y = 1. When the second term is larger in absolute

value than the first, the boundary is stable, as σ̇ is negative for σ > 0 and positive for σ < 0. Sliding
dynamics ensue. However, when we decrease n, the second term becomes smaller in the absolute value.
It is now possible to have σ̇ > 0 also for σ > 0, and there is no sliding as the boundary is simply
punched through.

With sliding, the system evolves along the boundary σ(x) = 0. Given that the time derivative of βy
is a positive constant at the boundary, the value of βy grows without bounds during sliding. However,
as the product of βy and my at the boundary is constant, my must converge to zero. Therefore, the
limit point of the sliding dynamics in this simple case could only be (mπ,my) = (0, 0). This behavior
is probably responsible for the fact that once the sliding dynamics commences in our simulations that
take place in 7D space, the constant only solution (0,0) is the ultimate outcome, even when the sliding
is consequently discontinued: sliding brings the trajectory ever closer to (0,0) rather than back to the
(0,1) solution, the MSV REE.

Another consequence of the slow updating of attention weights consists of affecting whether the
13We further assume that the second moments R have converged to their equilibrium values Σ in order to simplify the

exposition.
14This is because the value of the penalty term is increasing in my , and so the forecasting rule with fewer variables is

preferred when we increase my marginally from the boundary.
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trajectory even reaches the (0,0)-(0,1) boundary. Outside of the simplified 2D case we just considered,
the boundary is a complicated object in the seven-dimensional space rather than a simple hyperbola
Ψy = my ·βy = Ψ̄y. It is possible that when the trajectory is moving towards my = 1 very fast (n = 1)
hitting the boundary becomes impossible, thus expanding the region in the parameter space where
convergence to the MSV REE is observed.

5 Conclusions
In this paper we extend the standard Recursive Least Square learning algorithm to the case of penalized
regression as in Gabaix (2014). We investigate the convergence properties of the continuous time
approximating ODE for this combined algorithm, called Sparse Adaptive Learning, and establish that
allowing for dynamic choice of attention to be paid to different model variables rules out convergence
to the RPE. The attention weights corresponding to the RPE are never the ultimate outcome, even
though initially the beliefs are consistent with the RPE. This result is in stark contrast with a single
application of the sparsity penalized regression, which never delivered the MSV REE as an outcome in
Audzei and Slobodyan (2022). Depending on the attention costs, a limit point of the learning dynamics
is either MSV REE or the constant-only rule.

Strictness of the monetary policy affects the evolution of the learning algorithm. When the Taylor
rule is more aggressive, the model variables become less volatile and less correlated across time making
lags of endogenous variables less useful for forecasting. In the presence of attention costs this could
lead to the agents selecting a constants-only forecasting rule – long-term inflation or inflation target –
rather than the rule consistent with the MSV REE.

The learning algorithm considered in this paper could lead to non-smooth dynamics due to the
agents discontinuously selecting the set of variables to be included into their forecasting rule. The
presence of these non-smooth dynamics forces us to rely on the theory of non-smooth differential
equations to study the approximating ODE. We also establish that the relative speed of adjusting the
belief coefficients and the attention weights has important implications for the trajectories that could
encounter the boundary between the two corner solutions, and develop some analytical results in a
simplified case.

The asymptotic global E-Stability of MSV REE we demonstrate in the paper implies that even
when the agents who are allowed to reconsider choices of their forecasting rule in a self-referential
system subject to attention costs initiate learning from the ’wrong’ equilibrium, they would typically
learn the MSV REE; alternatively, in a system with little volatility or autocorrelation of the endogenous
variables, they will switch to using the constant-only rule.
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A Model Derivations
Households maximize the infinite discounted sum of utility over consumption Ct and labour decisions
Nt:

∞∑
t=0

βtU(Ct,Ht, Nt), (A23)

where Ht = hCt−1 is external habit and 0 < β < 1 is the discount factor. The optimization results in
the familiar conditions:

−Un,t

Uc,t
=
Wt

Pt
, (A24)

Qt = Et

[
Uc,t+1

Uc,t

Pt

Pt+1

]
. (A25)

The first equation equalizes agent’s utility of consumption and dis-utility of labour. The second is an
Euler equation determining agents’ inter-temporal consumption decisions. We assume utility separable
in consumption and labour, with σ - relative utility of risk aversion, ϕ - Frisch elasticity of labour supply,
and gt a preference shock:

Ut = egt

(
(Ct −Ht)

1−σ

1− σ
− N1+ϕ

t

1 + ϕ

)
(A26)

so that
Uc,t = egt(Ct −Ht)

−σ. (A27)

Plugging Yt = Ct into the linearized Euler equation, we get the investment-savings curve (1).
For the rest of model, we utilize a textbook model from Galí (2015). The firms use labour to produce

differentiated final goods and face nominal rigidities á la Calvo with the probability of optimizing a price
θ. The differentiated good is aggregated using a consumption index: Ct =

[∫ 1

0
Ct(i)

ϵ−1
ϵ

] ϵ
ϵ−1 . Firms’

pricing decisions result in a new Keynesian Phillips curve in (2) with ω ≡ (1− θ)(1− βθ)(σ + ϕ)/θ.
It is convenient to rewrite the system of equation (4):(5) as:[

πt
yt

]
= AEt

[
πt+1

yt+1

]
+ C

[
πt−1

yt−1

]
+B

[
ut
gt

]
, (A28)

with A =

[
β − ω(1−h)(ϕπ−1)

(1+h)σ
ω

1+h

− 1−h
(1+h)σ (ϕπ − 1) 1

1+h

]
, C =

[
0 ωh

(1+h)

0 h
(1+h)

]
, B =

[
1 ω(1−h)

(1+h)σ

0 1−h
(1+h)σ

]
.

B Expert Forecast of the Output Gap
We first derive output gap expectations, given the inflation PLM, which can be potentially inconsistent
with REE MSV solution. Suppose inflation PLM has the following form

πt = ψππt−1 + ψyyt−1, (B29)
Etπt+1 = ψππt + ψyyt = ψ2

ππt−1 + ψπψyyt−1 + ψyyt, (B30)
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Plugging this PLM into (4) - (5) and denoting bππ =
(
β − ω(1−h)(ϕπ−1)

(1+h)σ

)
and byπ = − 1−h

(1+h)σ (ϕπ − 1),
we get:

yt =
1

1− byπψy

(
byπψ

2
ππt−1 + (byπψπψy +

h

1 + h
)yt−1 +

1

1 + h
Etyt+1 +

1− h

(1 + h)σ
gt

)
, (B31)

Similarly, for inflation:

πt =
bππψ

2
π

1− byπψy
πt−1 +

ω + βψy

(1− byπψy)(1 + h)
Etyt+1

+

(
bππψπψy

1− byπψy
+

h(ω + ψyβ)

(1 + h)(1− byπψy)

)
yt−1 +

(1− h)(ω + ψyβ)

(1 + h)σ(1− byπψy)
gt + ut, (B32)

where we have used bππ − ωbyπ = β.
We further assume that the agents receive ”expert advice” which coincides with the MSV solution

for output given the current ALM.15. Thus the expert forecasting model is:

yt = γyyt−1 + γππt−1 + γggt + γuut, (B33)
yt+1 = γyyt + γππt = γ2yyt−1 + γπγyπt−1 + γππt + γyγggt + γyγuut. (B34)

Now, as these experts know the system in (B31)-(B32), they plug the expression for inflation and
rearrange using bππ − ωbyπ = β:

Etyt+1((1− byπψy)(1 + h)− γπ(ω + βψy))

= (γπψyψπb
π
π(1 + h) + γπh(ω + ψyβ) + (h+ 1)γ2y (1− byπψy))yt−1

+ γπ(1 + h)(γy(1− byπψy) + bππψ
2
π)πt−1+

(γyγg(1− byπψy)(1 + h) +
γπ(1− h)

σ
(βψy + ω))gt

+ (1 + h)(1− byπψy)(γyγu + γπ)ut. (B35)

Now, we redefine the coefficients such that

Etyt+1 = γ̃yyt−1 + γ̃ππt−1 + γ̃uut + γ̃ggt, (B36)

with

γ̃y =
(γπψyψπb

π
π(1 + h) + γπh(ω + ψyβ) + (h+ 1)γ2y (1− byπψy))

((1− byπψy)(1 + h)− γπ(ω + βψy))
, (B37)

γ̃π =
γπ(1 + h)(γy(1− byπψy) + bππψ

2
π)

((1− byπψy)(1 + h)− γπ(ω + βψy))
, (B38)

γ̃u =
(1 + h)(1− byπψy)(γyγu + γπ)

((1− byπψy)(1 + h)− γπ(ω + βψy))
, (B39)

γ̃g =
(γyγg(1− byπψy)(1 + h) + γπ(1−h)

σ (βψy + ω))

((1− byπψy)(1 + h)− γπ(ω + βψy))
, (B40)

15That is, taking into account agents’ PLM for inflation.
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which will be our expert advice.
To get the coefficients, we plug the expression into (B31). The coefficients of the experts’ rule will

be the solution to the following equations and are functions of agents’ PLM.

γπ =
byπψ

2
π

(1− byπψy)
+

γπ(γy(1− byπψy) + bππψ
2
π)

(1− byπψy)((1− byπψy)(1 + h)− γπ(ω + βψy))
, (B41)

γy =
byπψπψy(1 + h) + h

(1− byπψy)(1 + h)

+
1

(1− byπψy)(1 + h)

(γπψyψπb
π
π(1 + h) + γπh(ω + ψyβ) + (h+ 1)γ2y (1− byπψy))

((1− byπψy)(1 + h)− γπ(ω + βψy))
, (B42)

γg =
h− 1

σ ((h+ 1) (byπψy − 1) + γπ (βψy + ω) + γy)
, (B43)

γu =
γπ

(h+ 1) (1− byπψy)− γπ (βψy + ω)− γy
. (B44)

C Rational Expectations MSV
Under REE MSV, the perceived law of motion for the system in (A28) is:[

πt
yt

]
= Ω+ C̄

[
πt−1

yt−1

]
+ Γ

[
ut
gt

]
, (C45)

Et

[
πt+1

yt+1

]
= Ω+ C̄

[
πt
yt

]
= Ω+ C̄Ω+ C̄2

[
πt−1

yt−1

]
+ C̄Γ

[
ut
gt

]
. (C46)

Plugging the PLM into (A28):[
πt
yt

]
= A(I + C̄)Ω +

[
A
(
C̄
)2

+ C
] [
πt−1

yt−1

]
+
[
AC̄Γ +B

] [ut
gt

]
. (C47)

Using the method of undetermined coefficients we can solve for the PLM coefficients from:

C̄ = AC̄2 + C = 0, (C48)
Γ = B +AC̄Γ, (C49)
Ω = A(I + C̄)Ω; (C50)

Generically, the eigenvalues of A(I + C̄) are not equal to unity, and therefore the solution for the
constant vector Ω is a zero vector.

The MSV coefficients are the solution of the following system

cyπ =
ωh

1 + h
+ (β − ω(1− h)(ϕπ − 1)

(1 + h)σ
)cyπc

y
y +

ω

1 + h
cyy

2, (C51)

cyy =
h

1 + h
− (1− h)(ϕπ − 1)

(1 + h)σ
cyπc

y
y +

1

1 + h
cyy

2. (C52)

While the first equation is quadratic, the second is cubic, with the determinant changing signs depend-
ing on the central bank’s reaction function. Thus we have 3 possible solutions. Following McCallum
(1983), we choose the solution for cyπ which goes to zero when ω = 0.
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Multiplying the second equation by ω and subtracting from the first, we get an expression for cyπ:

cyπ =
ωcyy

1− βcyy
. (C53)

For 0 < cyy < 1 it follows form (D83), that cyπ > 0.

We define the solution as C̄ =

[
0 cyπ
0 cyy

]
, Γ =

[
1 γyπ
0 γyy

]
, Ω =

[
0
0

]
.

C.1 E-Stability
We understand E-stability as expectational stability under learning as described in Evans and Honkapo-
hja (2001). For our model, the concept could be illustrated for our model as follows. Given the solution,
one can write T-mapping as a system of equations:

cyπ − >
ωh

1 + h
+ (β − ω(1− h)(ϕπ − 1)

(1 + h)σ
)cyπc

y
y +

ω

1 + h
cyy

2, (C54)

cyy − >
h

1 + h
− (1− h)(ϕπ − 1)

(1 + h)σ
cyπc

y
y +

1

1 + h
cyy

2, (C55)

with the Jacobian[
(β − ω(1−h)(ϕπ−1)

(1+h)σ )cyy − 1 (β − ω(1−h)(ϕπ−1)
(1+h)σ )cyπ + 2ω

1+hc
y
y

− (1−h)(ϕπ−1)
(1+h)σ cyy − (1−h)(ϕπ−1)

(1+h)σ cyπ − 1 + 2
1+hc

y
y

]
=

[
J11 J12
J21 J22

]
. (C56)

As long as the Taylor principle ϕπ > 1 is satisfied, J11 and J21 are negative. For reasonable ϕπ,
J12 > 0.16

For J22 < 0, the following conditions must hold: cyy ≤ (1+h)/2 and ϕπ > 1. For (1+h)/2 ≥ cyy ≤ 1,
the condition for even stricter ϕπ > 1 +

2cyy−(1+h)

(1−h)cyπ
> 1.

The discriminant (product of eigenvalues) of (C56) is then −J12J21+ J11J22 and the trace (sum
of eigenvalues) is J11+J22. The discriminant is positive and the trace is negative. Thus, the sufficient
condition for both eigenvalues to be negative is the Taylor principle ϕπ > 1. The Taylor principle is
sufficient unless the process for output is highly persistent cyy ≥ (1 + h)/2. For a highly persistent
output process, the sufficient condition for E-stability is ϕπ > 1 +

2cyy−(1+h)

(1−h)cyπ
> 1.

The strong E-Stability is stability under learning when agents are allowed to have over-specified
forecasting rules. In our model, we allow for arbitrary matrix C̄ with the following coefficients:

C̄ =

[
v cyπ
w cyy

]
. (C57)

The part of T-mapping responsible for C̄ is modified:[
bππ

ω
1+h

byπ
1

1+h

] [
v cyπ
w cyy

] [
v cyπ
w cyπ

]
+

[
0 ωh

1+h

0 h
1+h

]
=[

bππ(v
2 + wcyπ) +

ωw
1+h (v + cyy) bππ(v + cyy)c

y
π + ω

1+h (wc
y
π + (cyy)

2) + ωh
1+h

byπ(v
2 + wcyπ) +

w
1+h (v + cyy) byπ(v + cyy)c

y
π + h

1+h (wc
y
π + (cyy)

2) + h
1+h

]
, (C58)

16To make J12 negative, the reaction of monetary policy to inflation should be stronger than empirically plausible.
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where the elements of matrices A and C are given in (A28).
The part of the Jacobian responsible for these coefficients becomes:

J =


2bππ v̄ +

ω
1+h w̄ − 1 bππ c̄

y
π + ω

1+h (v̄ + c̄yy) bππw̄
ω

1+h w̄

2byπ v̄ +
1

1+h w̄ byπ c̄
y
π + 1

1+h (v̄ + c̄yy)− 1 byπw̄
1

1+h w̄

bππ c̄
y
π

ω
1+h c̄

y
π bππ(v̄ + c̄yy) +

ω
1+h w̄ − 1 bππ c̄

y
π + 2 ω

1+h c̄
y
y

byπ c̄
y
π

1
1+h c̄

y
π byπ c̄

y
y byπ c̄

y
π + 2 1

1+h c̄
y
y − 1

(C59)

The condition for strong E-Stability is
Eig(J) < 0. (C60)

With v̄ = w̄ = 0, the Jacobian becomes:

J =


−1 bππ c̄

y
π + ω

1+h c̄
y
y 0 0

0 byπ c̄
y
π + 1

1+h c̄
y
y − 1 0 0

bππ c̄
y
π

ω
1+h c̄

y
π bππ c̄

y
y − 1 bππ c̄

y
π + 2 ω

1+h c̄
y
y

byπ c̄
y
π

1
1+h c̄

y
π byπ c̄

y
y byπ c̄

y
π + 2 1

1+h c̄
y
y − 1

 , (C61)

where the lower 2× 2 block is the same as (C56) for weak E-stability. In addition to two eigenvalues
identical to those of (C56), this matrix has two more eigenvalues: −1 and byπ c̄

y
π + 1

1+h c̄
y
y − 1. For the

second extra eigenvalue to be negative, byπ c̄yπ + 1
1+h c̄

y
y − 1 = J22− 1 < J22 must hold.

Thus, the sufficient condition for strong E-stability is satisfied as long as the sufficient condition
for weak E-stability is satisfied.

D Restricted Perception Equilibrium
D.1 Definition of RPE and ALM coefficients
We focus on the RPE Mπ and derive the conditions for its existence below.

The agents’ inflation expectations with the Mπ forecasting rule (11) are formulated as follows:

πt+1 = απ
π + βπ

ππt = απ
π(1 + βπ

π ) + (βπ
π )

2πt−1, (D62)

When we plug the above Mπ into the model in (5) using expert forecast for output (B36), we get
the actual laws of motion (ALM) for inflation:

πt = bππα
π
π(1 + βπ

π ) +

(
bππ(β

π
π )

2 +
γ̃πω

1 + h

)
πt−1 +

ω(h+ γ̃y)

1 + h
yt−1

+
ω((1− h) + σγ̃g)

(1 + h)σ
gt + (

ωγ̃u
1 + h

+ 1)ut =

= āπ + b̄ππt−1 + c̄πyt−1 + η̄gπgt + η̄uπut, (D63)

with bπ = β − ω(ϕπ−1)(1−h)
σ(1+h) , and x̄π being the coefficients in inflation ALM.

Similarly, the ALM for the output gap is:

yt = byπ(α
π
π(1 + βπ

π )) +

(
byπ(β

π
π )

2 +
γ̃π

1 + h

)
πt−1 +

h+ γ̃y
1 + h

yt−1 +
1− h+ σγ̃g
(1 + h)σ

gt+

γ̃u
1 + h

ut = āy + b̄yπt−1 + c̄yyt−1 + η̄gygt + η̄uyut, (D64)
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with byπ = − 1−h
(1+h)σ (ϕπ − 1), and x̄y are output gap ALM coefficients.

When focusing on a converged RPE Mπ, we can plug ψy = 0 and ψπ = βπ
π into expert forecast

coefficients. The solution for γ and γ̃ is the solution to the following equations:

γπ = byπ(β
π
π )

2 +
γπ(γy + bππ(β

π
π )

2)

1 + h− γπω
, (D65)

γy =
h+ γ2y

1 + h− γπω
, (D66)

γg =
1− h

σ (1 + h− γπω − γy)
, (D67)

γu =
γπ

((1 + h)− γπω)− γy
; (D68)

and

γ̃y =
γπhω + (1 + h)γ2y

1 + h− γπω
, (D69)

γ̃π =
γπ(1 + h)(γy + bππ(β

π
π )

2)

1 + h− γπω
, (D70)

γ̃u =
(1 + h)γπ

((1 + h)− γπω − γy)
, (D71)

γ̃g = (1− h)
γy + ωγπ

(σ (1 + h− γπω − γy))
. (D72)

It is instructive to examine the coefficients. An economically meaningful coefficient on lagged
output is 0 < γy < 1. It follows from (D66) that ωγπ ≤ 1 + h − 2

√
h and γπ < (1 − γ2y)/ω; and

0 < γ̃y < 1.
Plugging (D65):(D72) into (D63):(D64), we obtain ALM coefficients for output and inflation.

c̄π = ω
(h+ γ̃y)

1 + h
= ωγy, (D73)

b̄π = bππ(β
π
π )

2 +
γ̃πω

1 + h
= ωγπ + β(βπ

π )
2, (D74)

c̄y =
h+ γ̃y
1 + h

= γy, (D75)

b̄y = byπ(β
π
π )

2 +
γ̃π

1 + h
= γπ. (D76)

Now, the ALM coefficients for shock processes:

η̄gπ =
(1− h)ω

(1 + h− γπω − γy)σ
, (D77)

η̄uπ =
(1 + h)− γy

((1 + h)− γπω − γy)
, (D78)
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η̄gy =
1− h

(1 + h− γπω − γy)σ
, (D79)

η̄uy =
γπ

1 + h− γπω − γy
. (D80)

D.2 RPE Beliefs
We treat the agents as econometricians, who learn the coefficients from running regressions of the
corresponding PLMs. Denoting the covariance between inflation and output Cov(π, y) ≡ σπy, and the
variances of output and inflation as σ2

y and σ2
π respectively, we can derive the coefficients for the Mπ

forecasting rule:

βπ
π =

Cov(πt, πt−1)

V ar (πt−1)
=
Cov(b̄ππt−1 + c̄πyt−1, πt−1)

V ar (πt−1)
=

= b̄π + c̄π
σπy
σ2
π

, (D81)

απ
π = (1− βπ

π )π̄. (D82)

For the My rule, the regression coefficients are computed with the law of motion for inflation given by
Mπ in (D63):

βy
y =

Cov (πt, yt−1)

V ar (yt−1)
=
Cov

(
b̄ππt−1 + c̄πyt−1, yt−1

)
V ar (yt−1)

=

= b̄π
σπy
σ2
y

+ c̄π, (D83)

αy
y = (1− βy

y )π̄. (D84)

D.3 Existence of RPE
For the Mπ to exist, there must exist a βπ

π , which is a solution for (D81). It has been shown in Audzei
and Slobodyan (2022) that there exists a unique solution for (D81), as long as the following matrix D
is stable:

D =

[
b̄π c̄π
b̄y c̄y

]
=

[
ωγπ + β(βπ

π )
2 ωγy

γπ γy

]
. (D85)

Determinant and trace are given by the following expressions:

det(D) = −γπωγy + (ωγπ + β(βπ
π )

2)γy = (βπ
π )

2γyβ (D86)
tr(D) = ωγπ + β(βπ

π )
2 + γy (D87)

For the matrix to be stable, we use the following conditions (see Audzei and Slobodyan 2022,
Appendix B, for details):

det(D) < 1, (D88)
det(D) > tr(D)− 1, (D89)
det(D) > −tr(D)− 1. (D90)
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Figure 5: γπ for different values of r – relative variance of inflationary shocks. The figure is drawn for r in the range
[0.1:0.1:0.5] left axis and [0.6:0.1:1] right axis.

The condition in (D88) is satisfied as (βπ
π )

2γyβ < 1.
To prove that the (D89) is satisfied, we combine (D86) and (D87) and rewrite them as:

ωγπ + β(βπ
π )

2 + γy < (βπ
π )

2γyβ + 1 (D91)

For γπ ≤ 0, given that βπ
π < 1, β < 1, and γy < 1, it is straightforward to show that β(βπ

π )
2 + γy <

1 + β(βπ
π )

2γy.
Values of γπ > 0 are not economically meaningful: besides, during our simulations there was no

stable solution with γπ > 0 for our parametrization. In Figure 5, we plot the solutions for γπ as a
function of monetary policy response to inflation and relative volatility of mark-up shocks to show that
the solution for γπ is always below zero.

The condition (D90) is satisfied as long as (βπ
π )

2γyβ > 0 and γπ < 0.
Thus, the matrix D is stable and the unique RPE solution exists.

D.4 Mπ Mapping and Variance-Covariance Matrix
To calculate observed average inflation, rewrite Mπ ALM as[

I −
(
b̄π c̄π
b̄y c̄y

)][
π̄
ȳ

]
=

[
āπ
āy

]
, (D92)

[
π̄
ȳ

]
=

[ āy c̄π+āπ(1−c̄y)

1−(b̄π+c̄y)+(b̄π c̄y−b̄y c̄π)
āy−āy b̄π+āπ b̄y

1−(b̄π+c̄y)+(b̄π c̄y−b̄y c̄π)

]
(D93)
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To calculate the variances-covariance matrix of the ALM, re-write:

Σ =

[
σ2
π σπy

σπy σ2
y

]
=

[
b̄π c̄π
b̄y c̄y

] [
σ2
π σπy

σπy σ2
y

] [
b̄π b̄y
c̄π c̄y

]
+

+

[
η̄uπ η̄gπ
η̄uy η̄gy

] [
σ2
u 0
0 σ2

g

] [
η̄uπ η̄uy
η̄gπ η̄gy

]
=,

=

[
(b̄π)

2σ2
π + 2b̄π c̄πσπy + (c̄π)

2σ2
y b̄π b̄yσ

2
π + (c̄π b̄y + b̄π c̄y)σπy + c̄π c̄yσ

2
y

b̄π b̄yσ
2
π + (c̄π b̄y + b̄π c̄y)σπy + c̄π c̄yσ

2
y (c̄y)

2σ2
y + (b̄y)

2σ2
π + 2b̄y c̄yσπy

]
+

+

[
(η̄uπ)

2σ2
u + (η̄gπ)

2σ2
g η̄gπ η̄

g
yσ

2
g + η̄uπ η̄

u
yσ

2
u

η̄gπ η̄
g
yσ

2
g + η̄uπ η̄

u
yσ

2
u (η̄gy)

2σ2
g + (η̄uy )

2σ2
u

]
.

(D94)

The elements of the variance-covariance matrix are the solution of the following equations:

σ2
π = (b̄π)

2σ2
π + 2b̄π c̄πσπy + (c̄π)

2σ2
y + (η̄uπ)

2σ2
u + (η̄gπ)

2σ2
g , (D95)

σπy = b̄π b̄yσ
2
π + (c̄π b̄y + b̄π c̄y)σπy + c̄π c̄yσ

2
y + η̄gπ η̄

g
yσ

2
g + η̄uπ η̄

u
yσ

2
u, (D96)

σ2
y = (c̄y)

2σ2
y + (b̄y)

2σ2
π + 2b̄y c̄yσπy + (η̄gy)

2σ2
g + (η̄uy )

2σ2
u. (D97)

D.5 E-stability
Proof of Proposition 2.0.1

From (D81) and (D82), the T-map for the RPE Mπ is:

βπ
π → b̄π + c̄π

σπy

σ2
π
, (D98)

απ
π → (1− βπ

π )π̄. (D99)

E-Stability For Mπ to by E-stable, eigenvalues of the following matrix should be negative:

Eig

(1− βπ
π )

∂(π̄)
∂απ

π
− 1

∂((1−βπ
π )π̄)

∂βπ
π

0
∂

[
b̄π+c̄π

σπy

σ2
π

]
∂βπ

π
− 1

 =

[
(1− βπ

π )
∂(π̄)
∂απ

π
− 1

∂

[
b̄π+c̄π

σπy

σ2
π

]
∂βπ

π
− 1

]
< 0. (D100)

In the text we have assumed that π̄ = 0, in this case the first eigenvalue is negative. We plot the
second eigenvalue for the parameter range r = σu/σg ∈ (0 : 1] for ϕπ > 1. As both eigenvalues are
negative for the considered parameter range, we conclude that Mπ is E-Stable.

D.6 Better forecasting performance
For better forecasting performance of Mπ relative to My we consider the mean squared forecast errors
criterion, given that agents have previously selected Mπ and test alternative models given Mπ ALM
in (D63). It is convenient to denote the composite of shocks as µt ≡ η̄gπgt + η̄uπut. We start with the
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Figure 6: E-Stability. Note: The figure is drawn for r in the range [0.1 : 0.1 : 1]. The darker colours correspond to
smaller r - lower relative standard deviations of inflationary shocks.

mean forecast error of Mπ. The forecast error of Mπ is the difference between the forecast and actual
inflation:

: eπt = (βπ
π − b̄π)πt−1 − c̄πyt−1 + µt

= (b̄π + c̄π
σπy
σ2
π

− b̄π)πt−1 − c̄πyt−1 − µt

= c̄π
σπy
σ2
π

πt−1 − c̄πyt−1 + µt, (D101)

: MSFEπ = Et(e
π
t )

2 = Et[c̄π
σπy
σ2
π

(πt−1)− c̄π(yt−1) + µt]
2

: = Et[c̄
2
π(
σπy
σ2
π

)2(πt−1)
2 − 2c̄πRc̄π(πt−1)(yt−1) + c̄2π(yt−1)

2 + µ2]

: = c̄2πσ
2
y(1−

σ2
πy

σ2
πσ

2
y

) + σ2
µ, (D102)

Similarly, the forecast error of My is:

: eyt =
(
cyy − c̄π

)
yt−1 − b̄ππt−1 + µt =

: = b̄πσπyyt−1 − b̄ππt−1 + µt =

: MSFEy = E[b̄π[
σπy
σ2
y

(yt−1)− (πt−1)]
2 + µ2] (D103)

: = b̄2πσ
2
π[1−

σ2
πy

σ2
yσ

2
π

] + σ2
µ. (D104)
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We are looking for the conditions under which MSFEπ < MSFEy. Then, the criterion is simply:

c̄2πσ
2
y < b̄2πσ

2
π. (D105)

E Theoretical Foundations of Sliding Dynamics
The discussion in this section follows Jeffrey (2019), Ch. 2, and the concepts from Filippov (1988).

Suppose there’s a vector ODE with a discontinuous flow,
·
x = f(x, λ), (E106)

so that at the boundary defined by D = {x : σ (x) = 0} there is a discontinuity of the function f.
The surface D is called discontinuity surface. The switching multiplier λ could be selected so that
λ = sign (σ) . Denote

f+(x) : = f(x; +1), σ (x) > 0,

f−(x) : = f(x;−1), σ (x) < 0.

Then the time derivative of the flow above (below) the surface could be written as

d

dt
=
dx

dt

d

dx
= f±

d

dx
.

The normal vector to D is defined as dσ
dx . Then, f · dσ

dx = dx
dt

dσ
dx = dσ

dt =
·
σ, so the projection of the

vector f onto the normal vector to D gives the time derivative of σ.
The Lemma 2.1 of Jeffrey (2019) then states that if f(x, λ) is continuous in λ and the components

of f±(x) normal to the boundary are opposing to each other, there exists an intermediate value of λ,
denoted λ$, −1 ≤ λ$ ≤ 1, such that f

(
x;λ$

)
· dσ
dx = 0. One could then further define solutions of the

ODE (E106) that exist on the discontinuity surface, the sliding flow, so that
·
x = f$ (x) = f

(
x;λ$

)
for σ (x) = 0,

f
(
x;λ$

)
· dσ
dx

= 0.
(E107)

This flow’s projection onto the normal to the boundary equals zero; thus σ (x) = 0 is preserved over
time. However, there could be a non-zero projection to the subspace that is tangent to the boundary
D at the point where it is reached by the original flow. This projection tangential to D gives rise to
the sliding dynamics along the boundary.

If the components of f±(x) normal to the boundary are pointing in the same direction, then a
simple crossing of the boundary will happen, and no sliding along the boundary D will be observed.
We check the opposing condition by computing the scalar product of the flows f+ and f−, with a
negative value signifying oppositely directed projections and thus the presence of sliding.

The easiest way of generating a function that is smooth in λ is to postulate that
·
x = f(x, λ) =

1

2
(1 + λ) f+(x) +

1

2
(1− λ) f−(x),

λ = +1, σ (x) > 0,

λ = −1, σ (x) < 0.

(E108)
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Then, one could define λs so that the projection of 1
2 (1 + λs) f+(x) + 1

2 (1− λs) f−(x) on the normal
to the boundary D is zero. The resulting flow then produces trajectories that slide along the boundary.

The construction above then suggests the following simple algorithm of evaluating the trajectories
of the approximating ODE that could involve sliding dynamics.

1. Trace trajectory of the ODE solution until time T, stopping at min(τ, T ), where τ is the first
time the boundary V(0,0)=V(0,1) is reached.

2. If τ < T , numerically compute the normal to the boundary V(0,0)=V(0,1) at the point it is
achieved.

3. Check whether the scalar product of the projections of the flow f±(x) onto the normal to the
boundary is positive or negative.

4. If the product is positive, this is a simple crossing. Continue with Step 1, stopping at min(τ∗, T ),
where τ∗ is the next time the boundary V(0,0)=V(0,1) is reached. Otherwise, switch to simu-
lating the sliding ODE constructed as in (E107-E108) above, also until min(τ∗, T ).

5. If τ∗ < T , repeat Step 3, otherwise end.

The algorithm described above could be thought of as a simplified version of Piiroinen and Kuznetsov
(2008).
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Abstrakt 

Tento článek studuje konvergenční vlastnosti, včetně lokální a globální silné E-stability, rovnováhy 

racionálních očekávání při nehladké dynamice učení. V jednoduchém novokeynesiánském modelu 

uvažujeme dva typy informačních omezení působících společně – adaptivní učení a řídkou racionalitu. Pro 

různá počáteční přesvědčení (beliefs) zkoumáme, zda konvergence k minimální stavové proměnné 

rovnováhy racionálních očekávání (MSV REE) dochází v průběhu času při kladných nákladech na 

pozornost. Zjišťujeme, že pro jakákoli počáteční přesvědčení prognostické pravidlo agentů konverguje buď 

k rovnováze MSV REE, nebo pro velké náklady na pozornost k pravidlu, které nebere v úvahu všechny 

proměnné kromě konstanty. Přísnější měnová politika mírně zvýhodňuje pravidlo pouze s konstantou. 

Chybně specifikované prognostické pravidlo, které používá proměnnou, jež se v MSV REE nevyskytuje, 

tento algoritmus nepřežije. Teorie nehladkých diferenciálních rovnic je použita ke studiu dynamiky našeho 

algoritmu učení. 
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