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Abstract

A finite group of voters must elect the pope from a finite set of candidates.
They repeatedly cast ballots (possibly for ever) until one candidate attains at least
Q votes. A candidate is electable—if enough voters prefer him to a continuous
disagreement—as well as stable—if no other candidate is preferred to him by a suf-
ficient number of voters. We provide a necessary and sufficient condition for the
existence of a candidate that is both electable and stable. When there are three
candidates and voters are willing to compromise somewhat, the condition requires
choice by two-thirds supermajority, which coincides with the procedure that the
Catholic Church has used to appoint the pope for almost a millennium.
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EI, j.zapal@gmail.com.

mailto:clara.ponsati@gmail.com
mailto:j.zapal@gmail.com


1 Introduction

The election of the pope by the College of Cardinals is perhaps the most structured and

long lasting example of an electoral institution. The Vatican conclave follows precise

rules developed and refined over centuries whereby repeated ballots take place for as long

as it takes (possibly forever) until one of the candidates receives 2/3 of the votes.

The combination of a 2/3 supermajority requirement with repeated ballots in the

Vatican conclave appears to be geared to attain a good compromise between the desire

to elect a stable pope, and the need to avoid gridlock. The cardinals wish to elected

a stable pope. That is, the elected pope ought to be sure to win if he were to face a

vote against any other candidate. But it has long been known1 that with more than

two candidates a simple majority may easily elect an unstable candidate. So the goal

of stability advises a supermajority, the stronger the better. On the other hand, the

cardinals need to elect someone, and the chances of gridlock are greater the stronger the

majority required is. So, to help electability, a minimal majority, not a 2/3 supermajority,

would be advisable. The Catholic Church seems to have settled at the 2/3 rule as the

‘right’ compromise between electability and stability.

However, reaching an outcome under a 2/3 supermajority is difficult. Repeated ballots

are a tool to facilitate compromise. In unstructured settings, when a vote is inconclusive,

it is natural that another vote takes place at a later date, and so on, again and again if

necessary. So the institutionalisation of repeated ballots appears as a natural response

to gridlock. With repeated ballots, voters must take into consideration the relative value

of a gridlock (staying locked in the Vatican voting forever without an outcome does not

seem too attractive), vis-à-vis the election of each of the candidates. For each cardinal,

some candidates are surely better than gridlock, they are acceptable, and others are not.

Thus voters might eventually compromise and vote for one such acceptable candidate,

even one ranking rather low in the preference profile. When an election requires Q votes,

the existence of an electable candidate, one acceptable for at least Q voters, is a necessary

condition to assure that voting will not go on forever.

With the motivating example of the Vatican conclave in mind, we propose a general

model of elections by repeated ballots to explore the conditions under which electability

and stability, each in turn, and both at the same time, prevail. We consider n voters that

must choose one candidate from a finite set of k candidates. We assume that repeated

ballots take place until a candidate obtains at least Q ≥ n+1
2

votes. Each individual

has a strict preference order over the set of candidates, and can compare each candidate

to the prospect of gridlock. We show that for a given electorate, increasing Q expands

the set of stable candidates and shrinks the set of electable candidates. We provide the

1By Pliny the Younger, Ramon Llull, Condorcet, Borda and Arrow, among others (McLean and
Urken, 1995).
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necessary and sufficient condition for a non-empty set of electable candidates, and the

necessary and sufficient condition for a non-empty set of stable candidates. Satisfying

both conditions is not sufficient for the existence of a candidate that is both electable

and stable. Our main contribution is to provide a necessary and sufficient conditions that

assures the existence of a candidate that is both electable and stable. When there are

three candidates and when voters are willing to compromise ‘somewhat’, assumptions we

argue oftentimes fit the reality of papal elections, the unique voting rule that satisfies the

condition is precisely the 2/3 supermajority.

Repeated ballots: Although perhaps not as structured as in the case of the pope

election, repeated ballots—balloting until a candidate obtains a predefined number of

votes without eliminating candidates between ballots as in runoff elections—are a common

procedure to (s)elect top-ranking appointees in all kinds of organizations. They are used

to appoint of heads of state, US presidential candidates, and orchestra conductors.

The Third Lateran Council in 1179 established the 2/3 supermajority required to

elect a pope. The rules of balloting cum clave, with a key, to elect the new pope were laid

out by Pope Gregory X in 1274. Pope Gregory XV in 1621 restricted ballots to include

a single name and prohibited a cardinal from voting for himself. Since then the rules

remain largely unchanged (Baumgartner, 2003, p. 33, 40, 145, 147).2 The rules, however,

do not clarify the meaning of the 2/3 supermajority when the number of cardinals is not

divisible by three. One exception is Pope John Paul II, who rules that ‘two thirds of

the votes are required’ and in the case of indivisibility ‘one additional vote is required’

(John Paul II, 1996, §62). The subsequent 2005 conclave that elected Pope Benedict XVI

required 77 votes from 115 cardinals present (Allen, 2005, p. 112), which is 2/3 rounded

up. Another exception similar to the previous one is Pope John XXIII. Seven of the

eleven conclaves that took place since the beginning of the 20th century had the number

of cardinals not divisible by three. In each case the number of votes required was 2/3

of the number of cardinals rounded up (Baumgartner, 2003; Walsh, 2003; Allen, 2005;

O’Connell, 2021; O’Connell and Piqué, 2025).3

Repeated ballots are used to elect the Italian president. The joint session of the

Italian Parliament votes until a candidate receives the required majority, which is 2/3

2Several minor changes include the switch to 2/3+1 supermajority (and a removal of the prohibition
of voting for self) (Pius XII, 1945, §68), reversal of this change (John XXIII, 1962, §15), reinstatement
(Paul VI, 1975, §65), and a final reversal (John Paul II, 1996, §62). Pope John Paul II decreed that after
30 ballots a simple majority suffices for the election and restricted the choice to the top two vote-getters
(John Paul II, 1996, §75). Pope Benedict XVI changed back to the 2/3 supermajority, but upheld the
top two vote-getters after the 30th ballot provision (Benedict XVI, 2013, §75).

3In addition to repeated ballots, a method typically called ‘scrutiny’, the other methods to elect a
pope are by ‘acclamation’ (all cardinals verbally assent to a candidate) and by ‘compromise’ (delegating
the choice to an ad hoc committee). The last time a pope has been elected by acclamation is in 17th
century and by compromise is in 13th century (Piazzoni, 2017). Pope Gregory XI made scrutiny the
usual method in 1621 (Walsh, 2003, p. 126) and Pope John Paul II banned the other two methods in
1996 (John Paul II, 1996, §62).
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supermajority on the first three ballots and simple majority thereafter. The process

can be lengthy: 16 rounds of voting were necessary in 1992, and 23 in 1971. In 2013 the

appointment of a successor to Italian President Giorgio Napolitano was due. Negotiations

dragged on for weeks and no candidate attained the required number of votes in the first

five ballots. The election was unsolvable until the incumbent president agreed to run for

another term and was elected on the sixth ballot.4

The US president might be elected via repeated balloting. When no candidate receives

a simple majority of the votes in the Electoral College, a contingent election—repeated

balloting in the US House of Representatives until a candidate receives simple majority,

with the choice restricted to three candidates who receive the most electoral college

votes—is used to elect the president. In 1825, John Quincy Adams was elected US

president in a contingent election. In 1837, Richard Mentor Johnson was elected US vice

president in a contingent election. Both in a single ballot. In 1801, Thomas Jefferson

was elected US president, this time the election took six days of debates and 36 ballots.5

The two main political parties in the US select their presidential candidates at Na-

tional Conventions. When no candidate receives a simple majority of delegates’ votes on

the first ballot, the convention becomes brokered and repeated balloting follows until a

candidate secures support from a simple majority of delegates. At least ten conventions

of each party were brokered, the last Democratic one in 1952 and the last Republican

in 1948. The 1880 Republican Convention needed 36 ballots to elect James A. Garfield,

a dark horse, who up to the 33rd ballot received at most two votes, far away from the

required 379. The 1924 Democratic Convention took a record 103 ballots to nominate

presidential candidate John W. Davis, a compromise candidate following a deadlock be-

tween William Gibbs McAdoo and Al Smith. From 1832 to 1932 the Democratic Party

required a 2/3 supermajority, as in the papal conclave.6

Repeated ballots are even used to appoint orchestra conductors. The 2015 choice of

the chief conductor of the Berlin Philharmonic to succeed Sir Simon Rattle has been

likened to the ‘papal conclave of the music world’. The process has been shrouded in

4The required majorities are specified in Article 83 of the Italian Constitution. Lengthy elections:
Guardian: With Parliament in Deadlock, Italy Seeks a President, April 18, 2013. The 2013 election:
New York Times: Italy’s President Is Granted New Term in Last-Ditch Effort to Break Deadlock, April
21, 2013.

5The Twelfth Amendment of the US Constitution ratified in 1804 provides for contingent elections.
Contingent election of the vice president happens in the US Senate. The choice is restricted to two
candidates and is by simple majority. For the 1825 and 1837 contingent elections see Neale (2020).
For the 1801 contingent election see Ferling (2004, ch. 12). This was the last presidential election held
before the Twelfth Amendment, which mainly changed voting in the electoral college, and left contingent
elections almost unchanged.

6The Call For the 2024 Democratic National Convention in part IX.C.7.f decrees that ‘balloting will
continue until a nominee is selected’. The Rules of the Republican Party for the 2024 convention in
rule 40(e) decree that the ‘chairman of the convention [. . . ] shall repeat the calling of the roll until a
candidate shall have received a majority’. Regarding brokered conventions and 2/3 supermajority see
David, Goldman, and Bain (1960, ch. 9, 17). For the 1880 convention see Ackerman (2003, ch. 5, 6).
On the 1924 convention see New Yorker: Conventional Wisdom, March 21, 2016.
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secrecy: the orchestra members met at a secret Berlin location and were not allowed to

carry their phones. After 11 hours and several rounds of voting, they abandoned the

effort and the subsequent conclave elected Kirill Petrenko a month later.7

Related literature: The political science and political economics literature analyzing

papal elections is remarkably scarce. Colomer and McLean (1998) review the history of

papal conclaves under the eyes of modern social choice theory, emphasizing the stability

properties of the 2/3 majority rule. Mackenzie (2020) is concerned with the potential

problem of cardinals voting for themselves and advocates a return to the rule dictated in

1945 by Pope Pius XII that required 2/3 + 1. Kwiek (2014) proposes a non-cooperative

game to model the conclave. He assumes that there are only two candidates, and that each

voter has an upper limit on the delay he is ready to endure, which is a commonly known.

Consequently the equilibrium outcome is an immediate election where the candidate

preferred by the pivotal voter (in terms of the order induced by the endurance limits)

prevails. Hunt (2015) studies betting on papal elections.

Maltzman, Schwartzberg, and Sigelman (2006) discuss the 2005 conclave that elected

Ratzinger as Pope Benedict XVI. They conjecture that John Paul II had changed the rules

of the conclave out of concerns for stability, after a workshop on democracy organized

by the Pontifical Academy of Social Sciences, of which Kenneth J. Arrow was a member.

These changes—election restricted to the top two candidates and simple-majority after

the 30th ballot—were in effect only in 2005, because Pope Benedict XVI himself ordered

to return to 2/3 for all ballots.

In the ensuing conclave, Bergoglio, who had been the only serious contender against

Ratzinger, was elected as Pope Francis. Kóczy and Sziklai (2015) propose an analysis

of the 2013 conclave (where 115 cardinals participated, and 77 votes were necessary)

through the measurement of power indices à la Shapley and Shubik (1954). First, they

identify each cardinal as a pair (x, y), where x is the distance from his birthplace to

Rome and y is an indicator of his ideology in the conservative-liberal axis. Then they

propose an algorithm that checks all minimal winning coalitions (rectangular subsets of

77 cardinals) and gives one point to coalition members that are pivotal (i.e., sit on the

boundary). Bergoglio’s score turns out to be quite high, he ranks third.

More generally, our work is a contribution to the literature concerned with the stabil-

ity of collective decisions taken by voting, and the properties of supermajority require-

ments. As is well known, the prevalence of Condorcet cycles of intransitive majority

preferences—when a majority prefers A to B, a majority prefers B to C, and a majority

prefers C to A—are the cornerstone of Arrow’s foundational theorem. Ruling out such

cycles requires a restricted domain of preferences (the simplest one are single-peaked

preferences over one-dimensional candidates), or a stronger majority, often a very strong

7Guardian (Online): Berlin Philharmonic Deadlocked over Simon Rattle’s Successor, May 11, 2015
and Guardian: Kirill Petrenko to Succeed Simon Rattle at the Berlin Philharmonic, June 28, 2015.
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supermajority. Black (1948) was the first to study the stability properties of supermajor-

ity voting rules. Further developments exploring stability of voting rules formalize voting

as a cooperative game and examine conditions for the (non)existence of the core. Moulin

(1988) and Austen-Smith and Banks (2000) provide comprehensive treatments.8 For n

dimensional sets of candidates Caplin and Nalebuff (1988, 1991) show that a stable can-

didate exists under 64% supermajority provided that voters have Euclidean preferences

with sufficiently similar peaks, thus providing support for a quota rule remarkably close

to the 2/3 requirement. Other papers in the literature point out the benefits of super-

majority requirements as a tool to resolve trade-offs between commitment and flexibility

(Aghion and Bolton, 2003; Aghion, Alesina, and Trebbi, 2004; Barbera and Jackson, 2004;

Dal Bó, 2006; Messner and Polborn, 2004), or between different costs of collective action

(Buchanan and Tullock, 1962, ch. 6). We consider unrestricted preference over finite sets

of candidates, and focus on the link between stability and electability, a novel property of

candidates induced by the interaction of preferences over candidates and gridlock under

repeated ballots.

The rest of the paper is organized as follows. Section 2 presents the model. Section 3

presents the results. Appendix A contains all the proofs.

2 Model

We study the existence of feasible candidates that may arise victorious when a set of voters

chooses by repeatedly casting ballots. Each voter has preferences over candidates but only

casts votes for those candidates she prefers to a continuous disagreement. A candidate is

feasible if he is electable—if enough voters prefer him to a continuous disagreement—as

well as stable—if no other candidate is preferred to him by a sufficient number of voters.

Formally, n ≥ 2 voters choose from among k ≥ 2 candidates. Let N = {1, . . . , n} be

the set of voters and K = {1, . . . , k} be the set of candidates. The choice of a candidate

requires Q ∈ N or more votes, where Q ≥ n+1
2

and Q ≤ n. The voters either elect a

candidate or remain in a continuous disagreement, an outcome we denote by d.

Each voter i ∈ N has a complete, transitive and strict preference relation ≻i over K.

Let P be the set of all such relations. Moreover, voters’ preferences rank each candidate

relative to the continuous disagreement: for any i ∈ N , any ≻i ∈ P and any c ∈ K,

either c ≻i d or d ≻i c. When c ≻i d, we say that candidate c is acceptable for voter i

given ≻i (with ≻i omitted when no confusion arises) and is unacceptable if d ≻i c. We

model i’s willingness to compromise by a parameter ai ∈ {0, . . . , k}, which is the number

of candidates voter i finds acceptable: ai = |{c ∈ K : c ≻i d}| for any ≻i ∈ P . The

remaining k − ai candidates are unacceptable.9 An electorate v = (≻i)i∈N ∈ V = P n

8See also our discussion following Proposition 1.
9An alternative modelling approach would be to endow voters with preferences over both K ∪ {d}.
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is a profile of voters’ preferences over the candidates, where V is the set of all possible

electorates. An election is (v, Q).

Candidate c ∈ K is electable in election (v, Q) if |{i ∈ N : c ≻i d}| ≥ Q. That is, a

candidate is electable if he is acceptable for Q or more voters. Conversely, a candidate is

not electable if he is unacceptable for n−Q+1 or more voters. A candidate may win an

appointment by repeated ballots only if he is electable. If he is not, n − Q + 1 or more

voters prefer continuous disagreement over casting a vote in his favour so that he receives

at most Q− 1 votes. Let E(v, Q) be the set of electable candidates in election (v, Q).

Candidate c ∈ K is stable in election (v, Q) if |{i ∈ N : c′ ≻i c}| < Q for any other

candidate c′ ∈ K\{c}. That is, a candidate is stable if no other candidate is preferred byQ

or more voters. Conversely, a candidate that is not stable may be challenged by a counter-

candidate backed up by a coalition of Q or more voters. We insist on candidates being

stable because candidates that are not may fail to be seen as legitimate leaders. When

elected, a candidate that is not stable may spend most of his tenure trying to maintain

authority and grip on power rather than governing. Tenures of unstable candidates thus

may be tumultuous, futile or brief. In either case, unstable candidates are not desirable.

Let S(v, Q) be the set of stable candidates in election (v, Q).

3 Results

Our main research question is whether it is possible to guarantee the existence of sta-

ble and electable candidates for arbitrary profile of voters’ preferences, that is, for any

electorate v. Example 1 show that stability and electability of a candidate are distinct

properties.

Example 1. Consider an election with three voters and three candidates. The voters’

preferences v = (≻1,≻2,≻3) over the candidates are in the following table.

1 2 3
2 3 1
3 1 2

The first column shows the preferences of the first voter with more preferred candidates

placed higher, so that her ranking is 1 ≻1 2 ≻1 3, and similarly for the remaining voters.

The candidates shown with grey background are unacceptable, so that (ai)i∈N = (2, 2, 2).

When Q = 2, then two voters prefer candidate 1 to candidate 2, two voters prefer

candidate 2 to candidate 3, and two voters prefer candidate 3 to candidate 1. In partic-

ular, none of the candidates are stable, S(v, Q) = ∅. At the same time, all candidates

Because any preference profile in this alternative model maps into a preference profile in our model
with a certain number of acceptable candidates, these two models are equivalent. Our model simplifies
the exposition because most of our results are claims that hold for any voters’ preference keeping their
willingness to compromise fixed.
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are electable, E(v, Q) = {1, 2, 3}, because each candidate is acceptable for two voters.

However, changing ai to ai = 1 for all voters would make all voters unelectable.

When Q = 3, then for any pair of distinct candidates c and c′ at most two voters prefer

candidate c to candidate c′. Therefore, all candidates are stable, S(v, Q) = {1, 2, 3}. At
the same time, none of the candidates are electable, E(v, Q) = ∅, because each of the

candidates is unacceptable for one voter. However, changing ai to ai = 3 for all voters

would make all voters electable.

This example shows that a candidate can be both electable and stable, can be neither,

or posses only one of these properties. Note also that the increase in Q expands the set

of stable candidates and shrinks the set of electable candidates. This turns out to be a

general feature that holds beyond Example 1.

Lemma 1. Suppose Q < Q′. For any v ∈ V, S(v, Q) ⊆ S(v, Q′) and E(v, Q′) ⊆ E(v, Q).

The lemma is a direct consequence of the definitions of stability and electability. When

a candidate is stable in election (v, Q), no other candidate is preferred by Q or more votes,

and hence he is stable also in election (v, Q′) when Q′ > Q. When a candidate is electable

in election (v, Q′), he is acceptable for Q′ or more voters, and hence he is electable also

in election (v, Q) when Q < Q′.

Lemma 1 shows that for any electorate, increasing Q weakly expands the set of stable

candidates and weakly shrinks the set of electable candidates. Conversely, decreasing

Q weakly shrinks the set of stable candidates and weakly expands the set of electable

candidates. In other words, when choosing Q that ensures the existence of stable and

electable candidates, larger Qs favour stability but compromise electability, while lower

Qs favour electability but compromise stability.

The following two propositions provide a sufficient and necessary conditions such that

the set of stable candidates is non-empty for any electorate (Proposition 1) and such that

the set of electable candidates is non-empty for any electorate (Proposition 2). In line

with the discussion of Lemma 1 in the previous paragraph, ensuring stability requires Q

above a lower bound, while ensuring electability requires Q below an upper bound.

Proposition 1. S(v, Q) ̸= ∅ for all v ∈ V if and only if Q > nk−1
k
.

The proposition implies that a stable candidate exists for any electorate v if and only if

Q strictly exceeds a lower bound equal to nk−1
k
. To understand the lower bound, suppose

we wish to construct an electorate v such that S(v, Q) = ∅. The construction allocates

preference fragments 1 ≻i 2, 2 ≻i 3, . . . , k − 1 ≻i k and k ≻i 1 to the voters. Allocating

1 ≻i 2 to Q voters makes candidate 2 unstable. Making no candidate stable thus requires

allocating each of the k preference fragments to Q votes, that is, allocating Qk preference

fragments overall. The total number of preference fragments that can be allocated to

the voters is n(k − 1) because no voter can be allocated all the k preference fragments,

7



as that would make her preferences intransitive. Our construction is thus feasible when

Qk ≤ n(k − 1). Conversely, if an electorate v such that S(v, Q) = ∅ exists, then it

must have m ≤ k preference fragments 1 ≻i 2, 2 ≻i 3, . . . , m− 1 ≻i m and m ≻i 1 each

allocated to at least Q voters. Transitivity of voters’ preferences requires Qm ≤ n(m−1).

This condition, because m−1
m

increases with m, in turn implies Qk ≤ n(k − 1).10

Proposition 2. E(v, Q) ̸= ∅ for all v ∈ V if and only if Q <
∑

i∈N ai
k

+ 1.

The proposition implies that an electable candidate exists for any electorate v if and

only if Q is strictly lower than an upper bound equal to
∑

i∈N ai
k

+ 1. To understand the

upper bound, suppose we wish to construct an electorate v such that E(v, Q) = ∅. The

construction places candidates 1, 2, . . . , k to the positions in voters’ preferences where

candidates are unacceptable. Each voter has k − ai of these unacceptable positions, and

thus there is
∑

i∈N(k − ai) = nk −
∑

i∈N ai of these positions overall. An unelectable

candidate is acceptable for at most Q− 1 voters and unacceptable for at least n−Q+ 1

voters. Making no candidate electable thus requires k(n−Q+1) unacceptable positions in

voters’ preferences. Our construction is thus feasible when k(n−Q+1) ≤ nk−
∑

i∈N ai, or,

equivalently, when Q ≥
∑

i∈N ai
k

+1. Conversely, if an electorate v such that E(v, Q) = ∅
exists, then it must have candidates in k(n−Q+1) unacceptable positions, which requires

that k(n−Q+ 1) ≤ nk −
∑

i∈N ai.

Propositions 1 and 2 jointly imply that when nk−1
k

< Q <
∑

i∈N ai
k

+ 1, then for

any electorate, a stable candidate exists and an electable candidate exists. The question

remains as to whether there exists a candidate that is both stable and electable. The

following example shows that not necessarily.

Example 2. Consider an election with five voters and three candidates. The voters’

preferences v = (≻1,≻2,≻3,≻4,≻5) over the candidates are in the following table.

1 1 1 2 3
2 2 2 3 1
3 3 3 1 2

The first column shows the preferences of the first voter with more preferred candidates

placed higher, so that her ranking is 1 ≻1 2 ≻1 3, and similarly for the remaining

voters. The candidates shown with grey background are unacceptable, so that (ai)i∈N =

(3, 3, 3, 2, 1).

10Related results in the literature ensure core-nonemptiness (Nakamura, 1979, Theorem 2.3), existence
of majority equilibrium (Greenberg, 1979, Corollary 3), acyclicity of simple preference aggregation rules
(Austen-Smith and Banks, 2000, Theorem 3.2), or acyclicity of q-quota games (Moulin, 1988, Corollary
1 to Theorem 11.4). We provide a stand-alone proof of Proposition 1 because none of these results
immediately applies to our setting (the first one applies to collections of winning coalitions, the second
one provides a sufficient condition, the remaining ones require translation of acyclicity and of simple
rules or of q-quota games to our setting).
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Consider Q = 4 and note that nk−1
k

= 10
3

< Q = 12
3

<
∑

i∈N ai
k

+ 1 = 12
3
+ 1.

Propositions 1 and 2 thus imply S(v, Q) ̸= ∅ and E(v, Q) ̸= ∅. However, no candidate

is both stable and electable. To see this, note first that S(v, Q) = {1}. This is because

four voters prefer candidate 1 to candidate 2, four voters prefer candidate 2 to candidate

3, but only two voters prefer candidate 3 to candidate 1. Moreover, E(v, Q) = {2, 3}.
This is because candidate 1 is the only candidate that is unacceptable for two or more

voters.

This example thus shows that ensuring the existence of a stable candidate and ensuring

the existence of an electable candidate does not suffice for the existence of a candidate

that has both of these properties. Note also that the example is minimal in the sense

that candidate 1 becomes both stable and electable once he becomes acceptable for one

additional voter. Making candidate 1 acceptable for one additional voter means ensuring

either that ai = k for Q or more voters or that ai ≥ k − 1 for all voters. Another way to

ensure the existence of stable and electable candidate is to change Q to Q = n = 5. In

this case candidate 3 has these properties. It is these three conditions that feature in the

following proposition along with the conditions from Propositions 1 and 2.

Proposition 3. S(v, Q) ∩ E(v, Q) ̸= ∅ for all v ∈ V if and only if i) Q > nk−1
k
, ii)

Q <
∑

i∈N ai
k

+1, and iii) either ai = k for Q or more voters, or Q = n, or ai ≥ k− 1 for

all voters.

Proposition 3 is the main result of this paper. It provides a necessary and sufficient

condition for the existence of a candidate that is both stable and electable. The first two

conditions ensure that for any electorate v, a stable candidate exists and an electable

candidate exists.

How does the third condition ensure that there is a candidate that is both stable and

electable? When ai = k for Q or more voters, each candidate is acceptable for at least Q

voters and hence all candidates are electable, including those that are stable.

When Q = n, the key observation is that if candidate c is electable but not stable,

another candidate c′ exists such that all voters prefer c′ to c and such that c′ is electable.

Candidate c′ exists because c is not stable and hence there must be a candidate all voters

prefer to c. And c′ is electable because all voters not only prefer c′ to c but also find

c acceptable. The observation allows us to find a candidate that is both stable and

electable. Starting with electable but unstable candidate c, there is electable candidate

c′ that all voters prefer to c, and if c′ is unstable, then there is electable candidate c′′

that all voters prefer to c′. Continuing similarly, this sequence of candidates ends with

electable candidate c̃ such that no other candidate is preferred to c̃ by all voters, which

makes c̃ stable as well. Note that for each candidate in the sequence, all voters prefer that

candidate to all candidates that appear earlier in the sequence, and thus the sequence

includes distinct candidates.
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When ai ≥ k− 1 for all voters, each voter has at most one unacceptable candidate. A

similar observation as above still applies: if candidate c is electable but not stable, another

candidate c′ exists such that Q or more voters prefer c′ to c and such that c′ is electable.

Q or more voters prefer c′ to c because c is not stable and c′ is electable because each of

these voters has at most one unacceptable candidate. We can thus construct a similar

sequence of candidates as above, one that ends with electable and stable candidate. The

added difficulty is making sure that candidates do not repeat in this sequence, which,

however, is ruled out by the Q > nk−1
k

condition. The condition, as discussed after

Proposition 1, implies that there does not exist a sequence of candidates such that for

each candidate in the sequence Q or more voters prefer that candidate to the candidate

that precedes him, and such that the sequence starts and ends with the same candidate.

When either of the three conditions in Proposition 3 fails, there is an electorate

such that no candidate is simultaneously stable and electable. When Q ≤ nk−1
k
, this is

because there is an electorate such that no candidate is stable. When Q ≥
∑

i∈N ai
k

+ 1,

this is because there is an electorate such that no candidate is electable. When the third

condition fails, we can construct an electorate such that no candidate is both stable and

electable as in Example 2, which we generalize in Lemma A1. In particular, when the

third condition from Proposition 3 fails, ai = k for Q− 1 or fewer voters, and ai ≤ k − 2

for some voter i. These two facts imply that there must be a coalition C ⊆ N of n−Q+1

voters such that ai ≤ k − 1 for all voters i ∈ C, and ai ≤ k − 2 for some voter i ∈ C.

Assigning preferences 1 ≻i 2 ≻i . . . ≻i k to the Q − 1 voters not in C and preferences

2 ≻i . . . ≻i k ≻i 1 to the n − Q + 1 voters in C, except for the one voter in C with

ai ≤ k− 2 who has d ≻i 1 ≻i 2, generates an electorate with a unique stable candidate 1

that is not electable.

What if the conditions form Proposition 3 cannot be met and the existence of stable

and electable candidates for any electorate is not guaranteed? Can we, for example,

say that certain voting rules produce stable and electable candidates for a larger set of

electorates? Answering this question is difficult because the set of stable and electable

candidates for a given electorate is not monotone in the voting rule, unlike the set of stable

candidates, which expands when Q increases, and unlike the set of electable candidates,

which expands when Q decreases. Revisiting Example 2, recall that for Q = 4 the main

message of the example was to show that no candidate is both stable and electable. For

both lower or higher values of Q, however, a unique candidate is both stable and electable.

Namely, candidate 1 when Q = 3 and candidate 3 when Q = 5.

The three conditions from Proposition 3 provide some information about the trade-

offs involved when the existence of stable and electable candidates cannot be guaranteed.

For any given electorate, the first condition provides a non-empty set of stable candi-

dates, the second condition provides a non-empty set of electable candidates, and the

third condition, sometimes with the help of the first condition, provides a non-empty
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intersection of these two sets. Consider the case when the voting rule Q is larger than

what the second condition requires (with the other two conditions satisfied). In this case,

although the set of electable candidates might be empty, whenever it is not empty, it has

a non-empty intersection with the set of stable candidates.11 Conversely, consider the

case when the voting rule Q is smaller than what the first condition requires (with the

other two conditions satisfied). In this case, not only is it possible that the set of stable

candidates is empty, but also that it is non-empty but has an empty intersection with the

set of electable candidates. That is, electorates with a non-empty set of stable candidates

and a non-empty set of electable candidates but with an empty intersection of these two

sets are in general possible when Q violates the first condition of Proposition 3.12

We conclude our discussion of Proposition 3 by highlighting its important corollary.

The corollary emerges as a special case of the proposition when there are three candidates

and when each voter has two acceptable and one unacceptable candidate, that is, when

voters are willing to compromise somewhat. Historical accounts of conclaves as well

as anecdotal evidence suggest that both assumptions oftentimes fit the reality of papal

elections.

Historically, at a number of conclaves cardinals found themselves split into three

groups, with group affiliations generated either by ideology, or by regional alliances, or

by the popes who appointed the cardinals. When there are three groups and cardinals’

preferences are predominantly driven by group identity, a situation with essentially tree

candidates emerges. More recently, in each of the last three conclaves, in 2005, 2013,

and 2025, several newspaper reports described the election as having exactly three likely

winners. In the latter two conclaves, votes in the first ballot, which is often informative

about the serious candidates for papacy, confirmed the tripartite nature of the election.

In each of these conclaves, the first ballot saw exactly three candidates getting over 20

votes with these three clearly separated from the rest of the field.13

11Careful reading of the proof of Proposition 3 shows that if the first and the third condition of the
proposition hold, then for any electorate with a non-empty set of electable candidates, the set of stable
and electable candidates is non-empty.

12We can construct v such that S(v, Q) ̸= ∅ and E(v, Q) ̸= ∅ but S(v, Q) ∩ E(v, Q) = ∅ when

Q ≤ nk−2
k−1 , Q <

∑
i∈N ai

k +1 and ai = k− 1 for all voters (i.e., the first condition from Proposition 3 fails

but the other two conditions hold) under an auxiliary condition Q > n+1
2 . First, we make candidates 1

through k− 1 unstable by allocating each of the preference fragments 1 ≻i 2, 2 ≻i 3, . . . , k− 2 ≻i k− 1
and k − 1 ≻i 1 to Q voters. The construction is discussed after Proposition 1, formally described in its
proof, and requires Q ≤ nk−2

k−1 . Second, the remaining candidate k is assigned to be the least preferred
for n−Q+1 voters and the most preferred for all remaining voters. This assignment makes candidate k
stable, because for any other candidate n−Q+1 < Q voters prefer that candidate to k, but unelectable,
because he is acceptable for Q − 1 voters. The unique stable candidate k is unelectable and all the

remaining candidates are unstable but at least one of them has to be electable because Q <
∑

i∈N ai

k +1.
13For descriptions of conclaves with cardinals split into three groups see Baumgartner (2003, p. 128,

133, 183, 188). The 2005 conclave: The New York Times: Holy Rollers and Papal Perfectas, April
18, 2005 and The Atlantic Monthly: The Year of Two Popes, Jan/Feb 2006. The 2013 conclave: The
Vancouver Sun: Canada’s Marc Ouellet Came ‘Very Close’ to Becoming Pope, March 16, 2013 and The
Christian Science Monitor: Who’s on the Short List to Be the New Pope, March 12, 2013. The 2025
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Compromise is a thread that runs through the conclaves. That conclaves last at

least few days shows that cardinals typically have heterogeneous preferences and do not

compromise readily. That conclaves end shows that cardinals compromise eventually.

The key feature of the conclave, locking up cardinals and not allowing them to leave until

they choose a pope, is meant to enforce compromise. But reaching compromise might

take time; 17th and 18th centuries have witnessed at least four conclaves that lasted more

than 100 days. In at least one instance, cardinals claimed that ‘they were willing to die

in the conclave before voting for a candidate for the other side’.14

Corollary 1. Suppose k = 3 and ai = 2 for each voter i ∈ N . A candidate that is both

stable and electable exists for any electorate v ∈ V if and only if 2
3
n < Q < 2

3
n+ 1.

When there are three candidates and voters are willing to compromise somewhat,

then the voting rule Q that guarantees the existence of a stable and electable candidate

is the integer strictly between 2
3
n and 2

3
n+1. When n is not divisible by three, the unique

such integer is 2
3
n rounded up. That is, it is the 2/3 supermajority Catholic Church has

been using for almost a millennium. The corollary confirms that the 2/3 supermajority

is the right compromise between electability and stability, because it ensures both. And

it is a unique rule that ensures both.15

4 Concluding remarks

It is obvious that an election without an electable candidate will remain in eternal voting.

And we would argue that, in an election where just one candidate is electable, the outcome

will be to elect such candidate. But the results of this paper are silent regarding how,

when, and who will be elected when several candidates (stable or not) are electable.

Attempting to make such predictions requires behavioural and strategic considerations

that are outside the scope of the present paper. An explicit model of the election as a

dynamic non-cooperative game is necessary. We do that in a companion paper. In Ponsat́ı

and Zápal (2025) we explicitly model repeated voting as a non-cooperative game and

examine the (equilibrium) process whereby voters, after supporting their top candidate

at the onset, maintain such support or switch to vote other acceptable candidates as the

conclave: New York Times: How a Quiet American Cardinal Became Pope, May 11, 2025. The first
ballot in the 2013 conclave reported by O’Connell (2021): Scola 30, Bergoglio 26, Ouellet 22, O’Malley
10, all other cardinals fewer votes. The first ballot in the 2025 conclave reported by O’Connell and Piqué
(2025): Erdö, Prevost and Parolin above 20 votes, Aveline between 10 and 20 votes, all other cardinals
fewer votes.

14Baumgartner (2003, ch. 8) describes conclaves in the 17th and 18th century. Conclaves that lasted
more than 100 days took place in 1669, 1691, 1730 and 1740. The citation about the unwillingness to
compromise comes from the 1549 conclave, which lasted more than 70 days (Baumgartner, 2003, p. 109).

15When n is divisible by three, no integer satisfies 2
3n < Q < 2

3n+ 1. We discuss above that Q = 2
3n

ensures electability and Q = 2
3n+ 1 ensures stability.
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rounds of voting ensue. The tools and results of the present paper are useful building

blocks for that analysis.
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O’Connell, G. and E. Piqué (2025). El Último Conclave. Barcelona: Arpa Editores.

14



Paul VI (1975). Romano Pontifici Eligendo. Vatican City: Constitutio Apostolica.

Piazzoni, A. M. (2017). Le elezioni pontificie. Cenni storici e spunti di riflessione. Spazio

Filosofico 7 (1), 133–151.

Pius XII (1945). Vacantis Apostolicae Sedis. Vatican City: Constitutio Apostolica.
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A Proofs

Proof of Lemma 1

Fix v ∈ V, Q,Q′ ∈ N such that Q < Q′, and c ∈ K.

To prove that E(v, Q′) ⊆ E(v, Q), it suffices to prove that if c ∈ E(v, Q′), then

c ∈ E(v, Q). If c ∈ E(v, Q′), then |{i ∈ N : c ≻i d}| ≥ Q′, and hence |{i ∈ N : c ≻i d}| ≥
Q′ > Q, which implies c ∈ E(v, Q).

To prove that S(v, Q) ⊆ S(v, Q′), it suffices to prove that if c ∈ S(v, Q), then

c ∈ S(v, Q′). If c ∈ S(v, Q), then |{i ∈ N : c′ ≻i c}| < Q ∀c′ ∈ K \ {c}, and hence

|{i ∈ N : c′ ≻i c}| < Q < Q′ ∀c′ ∈ K \ {c}, which implies c ∈ S(v, Q′).

Proof of Proposition 1

We prove that S(v, Q) = ∅ for some v ∈ V if and only if Q ≤ nk−1
k
.

Only if: Fix v ∈ V such that S(v, Q) = ∅. We show that Q ≤ nk−1
k
. Because

S(v, Q) = ∅, there exists a sequence of m ≤ k distinct candidates (cj)
m
j=1 such that,

using cm+1 = c1, we have |{i ∈ N : cj+1 ≻i cj}| ≥ Q ∀j ∈ {1, . . . ,m}. Because

nm−1
m

≤ nk−1
k

when m ≤ k, it suffices to show that Q ≤ nm−1
m

, which we do by proving

two claims. First, we claim that
∑m

j=1 |{i ∈ N : cj+1 ≻i cj}| ≥ mQ, which follows from

|{i ∈ N : cj+1 ≻i cj}| ≥ Q ∀j ∈ {1, . . . ,m}. Second, we claim that
∑m

j=1 |{i ∈ N : cj+1 ≻i

cj}| ≤ n(m − 1). To see this, let I(s) = 1 if s is true and I(s) = 0 if s is false, and note

that
∑m

j=1 I(cj+1 ≻i cj) ≤ m− 1 ∀i ∈ N because
∑m

j=1 I(cj+1 ≻i cj) = m for some i ∈ N

would imply by transitivity of ≻i that cm+1 ≻i c1 = cm+1. Thus,
∑m

j=1 |{i ∈ N : cj+1 ≻i

cj}| =
∑m

j=1

∑
i∈N I(cj+1 ≻i cj) =

∑
i∈N

∑m
j=1 I(cj+1 ≻i cj) ≤

∑
i∈N(m− 1) = n(m− 1).

The two claims imply mQ ≤ n(m− 1), or, equivalently, Q ≤ nm−1
m

.
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If: Suppose Q ≤ nk−1
k
. We show that v ∈ V such that S(v, Q) = ∅ exists. Denote

Lc = {(c− 1)(n−Q) + 1, . . . , (c− 1)(n−Q) + n−Q} ∀c ∈ K. Define c′ ∈ K implicitly

by n ∈ Lc′ . Note that c
′ exists because ∪c∈KLc = {1, . . . , k(n−Q)} and because 1 ≤ n ≤

k(n − Q), where the second inequality follows from Q ≤ nk−1
k
. Moreover, c′ is unique

because for any j, j′ ∈ K such that j ̸= j′, Lj ∩Lj′ = ∅. Allocate the voters into sets Dc

for all c ∈ K such that

Dc = {i ∈ N : i ∈ Lc} if c < c′

Dc = {i ∈ N : i ∈ Lc ∧ i ≤ n} if c = c′

Dc = ∅ if c > c′.

(A1)

Note that, by construction, ∪c∈KDc = N , Dj∩Dj′ = ∅ for any j, j′ ∈ K such that j ̸= j′,

and |N \Dc| ≥ Q ∀c ∈ K, which follows from |Lc| ≤ n−Q ∀c ∈ K.

There exists v = (≻i)i∈N such that

∀i ∈ D1, k ≻i k − 1 ≻i . . . . . . . . . ≻i 2 ≻i 1

∀i ∈ D2, 1 ≻i k ≻i . . . . . . . . . ≻i 3 ≻i 2

∀i ∈ D3, 2 ≻i 1 ≻i . . . . . . . . . ≻i 4 ≻i 3
...

∀i ∈ Dc+1, c ≻i c− 1 ≻i . . . ≻i 1 ≻i k ≻i . . . ≻i c+ 2 ≻i c+ 1
...

∀i ∈ Dk, k − 1 ≻i k − 2 ≻i . . . . . . . . . ≻i 1 ≻i k.

(A2)

Given this v, |{i ∈ N : 1 ≻i k}| = |N \ D1| ≥ Q, and hence k /∈ S(v, Q), as well as,

∀c ∈ K \ {k}, |{i ∈ N : c + 1 ≻i c}| = |N \ Dc+1| ≥ Q, and hence c /∈ S(v, Q). Thus

S(v, Q) = ∅.

Proof of Proposition 2

We prove that E(v, Q) = ∅ for some v ∈ V if and only if Q ≥
∑

i∈N ai
k

+ 1.

Only if: Fix v ∈ V such that E(v, Q) = ∅. We show that Q ≥
∑

i∈N ai
k

+ 1 by

proving two claims. First, we claim that
∑

c∈K |{i ∈ N : c ≻i d}| =
∑

i∈N ai. To see

this, let I(s) = 1 if s is true and I(s) = 0 if s is false. Then
∑

c∈K |{i ∈ N : c ≻i

d}| =
∑

c∈K
∑

i∈N I(c ≻i d) =
∑

i∈N
∑

c∈K I(c ≻i d) =
∑

i∈N ai. Second, we claim that∑
c∈K |{i ∈ N : c ≻i d}| ≤ k(Q − 1). To see this, note that E(v, Q) = ∅ implies

|{i ∈ N : c ≻i d}| ≤ Q − 1 ∀c ∈ K. The two claims imply
∑

i∈N ai ≤ k(Q − 1), or,

equivalently, Q ≥
∑

i∈N ai
k

+ 1.
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If: Suppose Q ≥
∑

i∈N ai
k

+ 1. We show that v ∈ V such that E(v, Q) = ∅ exists.

Construct sequence of candidates

C = (cj)
k(n−Q+1)
j=1 = (1, . . . , k, 1, . . . , k, . . . . . . . . . , 1, . . . , k︸ ︷︷ ︸

(1,...,k) repeated n−Q+1 times

). (A3)

Denote Mi = {(
∑i−1

j=1 k − aj) + 1, . . . , (
∑i−1

j=1 k − aj) + k − ai} ∀i ∈ N . Define i′ ∈ N

implicitly by k(n − Q + 1) ∈ Mi′ . Note that i′ exists because ∪i∈NMi = {1, . . . , nk −∑
i∈N ai} and because 1 ≤ k(n − Q + 1) ≤ nk −

∑
i∈N ai, where the second inequality

follows from Q ≥
∑

i∈N ai
k

+ 1. Moreover, i′ is unique because for any j, j′ ∈ N such that

j ̸= j′, Mj ∩ Mj′ = ∅. Allocate the elements (i.e., the candidates) of C = (cj)
k(n−Q+1)
j=1

into sets Ri for all i ∈ N such that

Ri = {cj ∈ K : j ∈ Mi} if i < i′

Ri = {cj ∈ K : j ∈ Mi ∧ j ≤ k(n−Q+ 1)} if i = i′

Ri = ∅ if i > i′.

(A4)

Note that, ∀i ∈ N , |Ri| ≤ k − ai because |Mi| = k − ai. Moreover, ∀c ∈ K, |{i ∈ N :

c ∈ Ri}| = n − Q + 1, which is because, ∀i ∈ N , Mi is a set of k − ai ≤ k consecutive

integers, because any k or fever consecutive elements of C are all distinct, and because

C includes each candidate exactly n−Q+ 1 times.

Therefore, v = (≻i)i∈N such that Ri ⊆ {c ∈ K : d ≻i c} ∀i ∈ N exists. Given this v,

∀i ∈ N and ∀c ∈ K, if c ∈ Ri, then d ≻i c. Thus, ∀c ∈ K, |{i ∈ N : d ≻i c}| ≥ |{i ∈
N : c ∈ Ri}|, and hence |{i ∈ N : c ≻i d}| = n − |{i ∈ N : d ≻i c}| ≤ n − |{i ∈ N : c ∈
Ri}| = n− (n−Q+ 1) = Q− 1. Thus E(v, Q) = ∅.

Proof of Proposition 3

If: Fix v ∈ V. We start by establishing two claims. First, assuming either Q = n or

ai ≥ k − 1 ∀i ∈ N , we claim that if c ∈ E(v, Q) and |{i ∈ N |c′ ≻i c}| ≥ Q for some

c, c′ ∈ K, then c′ ∈ E(v, Q). To see this, fix c, c′ ∈ K such that |{i ∈ N : c ≻i d} ≥ Q

and |{i ∈ N : c′ ≻i c}| ≥ Q. If Q = n, we have, ∀i ∈ N , c ≻i d and c′ ≻i c and

hence c′ ≻i d. Thus c′ ∈ E(v, Q). If ai ≥ k − 1 ∀i ∈ N , each voter has at most one

unacceptable candidate and thus if c′ ≻i c for some i ∈ N , then c′ ≻i d. Therefore,

|{i ∈ N : c′ ≻i c}| ≥ Q implies c′ ∈ E(v, Q).

Second, assuming Q > nk−1
k
, we claim that for any sequence of m ≤ k distinct

candidates (cj)
m
j=1, using cm+1 = c1, |{i ∈ N |cj+1 ≻i cj}| ≥ Q ∀j ∈ {1, . . . ,m} is not

possible. Suppose, towards a contradiction, that such a sequence exists. Then mQ ≤∑m
j=1 |{i ∈ N |cj+1 ≻i cj}| ≤ n(m− 1). The first inequality follows from |{i ∈ N : cj+1 ≻i

cj}| ≥ Q ∀j ∈ {1, . . . ,m}. To see the second inequality, let I(s) = 1 if s is true and
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I(s) = 0 if s is false. Then, ∀i ∈ N ,
∑m

j=1 I(cj+1 ≻i cj) ≤ m− 1 because ≻i is transitive.

Hence
∑m

j=1 |{i ∈ N |cj+1 ≻i cj}| =
∑m

j=1

∑
i∈N I(cj+1 ≻i cj) =

∑
i∈N

∑m
j=1 I(cj+1 ≻i

cj) ≤ n(m−1). The two inequalities jointly imply Q ≤ nm−1
m

. Becausem ≤ k, m−1
m

≤ k−1
k

and thus Q ≤ nm−1
m

≤ nk−1
k
, which is a contradiction to Q > nk−1

k
.

Suppose now that nk−1
k

< Q <
∑

i∈N ai
k

+ 1. Then S(v, Q) ̸= ∅ by Proposition 1 and

E(v, Q) ̸= ∅ by Proposition 2. If ai = k for Q or more voters, then E(v, Q) = K, and

hence E(v, Q)∩S(v, Q) ̸= ∅, as desired. To cover the remaining two cases, suppose either

Q = n or ai ≥ k − 1 ∀i ∈ N , and, towards a contradiction, that E(v, Q) ∩ S(v, Q) = ∅.

E(v, Q) ̸= ∅, S(v, Q) ̸= ∅ and the contradiction assumption imply that c1 ∈ K exists

such that c1 /∈ S(v, Q) and c1 ∈ E(v, Q).

Because c1 /∈ S(v, Q), c2 ∈ K exists such that |{i ∈ N |c2 ≻i c1}| ≥ Q, which, by

the first claim and c1 ∈ E(v, Q), implies c2 ∈ E(v, Q), and hence, by the contradiction

assumption, c2 /∈ S(v, Q). By construction, c2 ̸= c1. Hence c1 and c2 are distinct

candidates, both belong to E(v, Q) and neither belongs to S(v, Q). If k = 2, this is a

contradiction to S(v, Q) ̸= ∅. Hence k ≥ 3.

Because c2 /∈ S(v, Q), c3 ∈ K exists such that |{i ∈ N |c3 ≻i c2}| ≥ Q, which, by

the first claim and c2 ∈ E(v, Q), implies c3 ∈ E(v, Q), and hence, by the contradiction

assumption, c3 /∈ S(v, Q). By construction, c3 ̸= c2. By the second claim, c3 ̸= c1 (if

c3 = c1, then (cj)
2
j=1, using c3 = c1, would constitute the sequence the second claim

shows cannot exist). Hence c1, c2 and c3 are distinct candidates, all belong to E(v, Q)

and neither belongs to S(v, Q). If k = 3, this is a contradiction to S(v, Q) ̸= ∅. Hence

k ≥ 4.

Continuing analogously, k − 1 distinct candidates c1, c2, . . . , ck−1 exist, all belong to

E(v, Q), neither belongs to S(v, Q), and |{i ∈ N : cj+1 ≻i cj}| ≥ Q ∀j ∈ {1, . . . , k − 2}.
Because ck−1 /∈ S(v, Q), ck ∈ K exists such that |{i ∈ N |ck ≻i ck−1}| ≥ Q, which, by

the first claim and ck−1 ∈ E(v, Q), implies ck ∈ E(v, Q), and hence, by the contradiction

assumption, ck /∈ S(v, Q). By construction, ck ̸= ck−1. By the second claim, ck ̸= c1

(if ck = c1, then (cj)
k−1
j=1 , using ck = c1, would constitute the sequence the second claim

shows cannot exist), and similarly, ck ̸= cj ∀j ∈ {2, . . . , k − 2}. Hence c1, c2, . . . , ck

are distinct candidates and neither belongs to S(v, Q). Thus S(v, Q) = ∅, which is a

contradiction.

Only if: If Q ≤ nk−1
k
, there exists v ∈ V such that S(v, Q) = ∅ by Proposition 1. If

Q ≥
∑

i∈N ai
k

+ 1, there exists v ∈ V such that E(v, Q) = ∅ by Proposition 2. Therefore,

what remains to prove is that there exists v ∈ V such that E(v, Q) ∩ S(v, Q) = ∅ when

nk−1
k

< Q <
∑

i∈N ai
k

+ 1, Q ≤ n − 1, ai = k for Q − 1 or fewer voters, and ai ≤ k − 2

for some voter i ∈ N . We now argue that Lemma A1, which we state and prove below,

applies under these conditions. This concludes the proof because the lemma constructs

v ∈ V such that E(v, Q) ∩ S(v, Q) = ∅.

We make a series of claims to establish that Lemma A1 applies when nk−1
k

< Q <

18



∑
i∈N ai
k

+ 1, Q ≤ n − 1, ai = k for Q − 1 or fewer voters, and ai ≤ k − 2 for some voter

i ∈ N . First, note that n+1
2

≤ Q and Q ≤ n − 1 when n = 2 imply 3
2
≤ Q ≤ 1, which

is not possible, and hence n ≥ 3. Second, n+1
2

≤ nk−1
k

is equivalent to 1 ≤ nk−2
k
, which

holds when n ≥ 3 and k ≥ 3. That is, because Q > nk−1
k
, we have either k = 2 or

Q > n+1
2
. Third, because ai = k for Q − 1 or fewer voters and ai ∈ {0, . . . , k} ∀i ∈ N ,

ai ≤ k− 1 for n−Q+1 or more voters. Moreover, ai ≤ k− 2 for some i ∈ N . Therefore,

there exists C ⊆ N such that |C| = n − Q + 1, ai ≤ k − 1 ∀i ∈ C, and ai ≤ k − 2 for

some i ∈ C.

Lemma A1. Suppose Q ≤ n − 1 and either k = 2 or Q > n+1
2
. Suppose there exists

C ⊆ N such that |C| = n − Q + 1, ai ≤ k − 1 ∀i ∈ C, and ai ≤ k − 2 for some i ∈ C.

There exists v ∈ V such that E(v, Q) ∩ S(v, Q) = ∅.

Proof. Suppose Q ≤ n − 1 and either k = 2 or Q > n+1
2
. Fix C ⊆ N and i′ ∈ C such

that |C| = n − Q + 1, ai ≤ k − 1 ∀i ∈ C, and ai′ ≤ k − 2. We show that v ∈ V exists

such that S(v, Q) = {1} and 1 /∈ E(v, Q).

Consider v ∈ V such that 1 ≻i 2 ≻i . . . ≻i k ∀i ∈ N \ C, 2 ≻i 3 ≻i . . . ≻i k ≻i 1

∀i ∈ C \ {i′}, and d ≻i′ 1 ≻i′ 2, which exists. The number of voters in the three sets

N \ C, C \ {i′} and {i′} is, respectively, Q − 1, n − Q and 1. Moreover, ∀i ∈ C \ {i′},
ai ≤ k − 1 and thus d ≻i 1.

Given this v, |{i ∈ N : 1 ≻i d}| ≤ |N \ C| = Q − 1 < Q, and hence 1 /∈ E(v, Q).

Moreover, |{i ∈ N : 1 ≻i 2}| = |N \ C|+ |{i′}| = Q and |{i ∈ N : 2 ≻i 1}| = n−Q < Q,

where the inequality follows from Q ≥ n+1
2
. If k = 2, we thus have S(v, Q) = {1}, as

desired. If Q > n+1
2
, S(v, Q) = {1} follows because we additionally have, ∀c ∈ K \{1, k},

|{i ∈ N : c ≻i c + 1}| ≥ |N \ C| + |C \ {i′}| = n − 1 ≥ Q, as well as, ∀c ∈ K \ {1, 2},
|{i ∈ N : c ≻i 1}| ≤ |C| = n − Q + 1 < Q, where the second inequality follows from

Q > n+1
2
.
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Abstrakt 

 

Konečná skupina voličů vybírá papeže z konečné skupiny kandidátů. Počet kol volby není omezen a 

voliči hlasují do okamžiku, kdy jeden z kandidátů získá Q hlasů. Kandidát je volitelný, pakliže jej 

dostatek voličů preferuje nekonečnému opakování kol volby. Kandidát je stabilní, pakliže neexistuje 

jiný kandidát, kterého by dostatek voličů preferoval. Dokazujeme nutnou a postačující podmínku pro 

existenci volitelného a stabilního kandidáta. Pakliže jsou kandidáti tři a voliči jsou částečně otevřeni 

kompromisu, pak tato podmínka vyžaduje volbu pomocí dvoutřetinové většiny hlasů, což je způsob, 

který katolická církev používá k volbě papeže již po téměř tisíc let. 
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