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Abstract

We study price discrimination in a monopolistic software market. The monop-

olist charges di�erent prices for the upgrade version and for the full version. Con-

sumers are heterogeneous in taste for in�nitely durable software and there is no

resale. We show that price discrimination leads to a higher software quality but

raises both absolute price and price per quality. This price discrimination does not

increase sales and it decreases the total number of consumers compared to no dis-

crimination. Finally, such discrimination decreases consumers' surplus but increases

the developer's pro�t and social welfare that attains the social optimum in the limit.

Abstrakt

V £lánku analyzujeme cenovou diskriminaci na monopolním softwarovém trhu.

Monopolista nabízí rozdílné ceny za upgrade a za plnou verzi. Uºivatelé jsou hetero-

genní ve vnímání softwaru, který má nekone£nou trvanlivost a který není ur£ený na

dal²í prodej. Ukazujeme, ºe cenová diskriminace vede k vy²²í kvalit¥ softwaru, ale

zárove¬ zp·sobuje r·st ceny, i r·st ceny za jednotku kvality. Tato cenová diskrimi-

nace nezvy²uje prodej a sniºuje celkový po£et uºivatel· v porovnání s variantou bez

diskriminace. V neposlední °ad¥, tato diskriminace sniºuje uºivatelský p°ebytek,

zvy²uje pro�t �rmy a celkový spole£enský blahobyt se limitn¥ blíºí optimu.
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1 Introduction

The software market is one of the largest and fastest growing markets where, for

instance, the largest developer (Microsoft) has a revenue of more than $60 billion per

year1. There are at least several hundred thousand other developers operating on

the market, and so it would appear that tough competition is the norm. However, by

taking a closer look at every particular sub-market of the software market (not only

the operating systems), we could often identify a dominant developer with such an

established position (e.g., Adobe, Symantec, Pinnacle, and of course Microsoft) that

the whole sub-market could be treated almost as a monopoly. Such a monopolistic

market structure may serve as an explanation for some high software prices (Katz

and Shapiro, 1998). Moreover, there is a high range of possible price discrimination

schemes that such a monopolist may undertake. Since software is �lent� to users,

where the identity of both parties is often known, the developer could easily set

marginal prices to di�erent groups of users without incentive problems. In such a

case, a user prefers to reveal the personal information that quali�es him for a lower

price. In the real world, we could observe dozens of prices for identical software: a

price for the standard retail user (often called the full version), the OEM version, the

upgrade, and student or multi-license versions. On top of that, there are di�erent

prices for the university, the army, the public sector, or large corporations, and

naturally, the goal is to set prices close to the reservation prices of the respective

groups.

Besides the pricing policy, an even more important issue is whether, and how,

to improve the quality of software that such a monopolist �rm generates. By the

vague term �quality,� we understand not only software functionality, but foremost

software stability, speed, compatibility with hardware, and, as is becoming increas-

ingly important nowadays, security. From this point of view, software evolution

may be viewed as socially sub-optimal if a developer rashly introduces poorly tuned

software2 that leads to welfare losses caused by additional consumer costs3.

Thus, one of the aims of our paper is to analyze the pricing policy of a soft-

ware monopolist and its impact on software quality evolution. More speci�cally,

a monopolist can either set a single price for its products, or it can stick to price

1The Microsoft report for the �scal year 2008.
2For example, more than 20 000 mistakes were known for Microsoft Windows 2000 at the time

of the release, and a Service Pack for Microsoft Windows XP was in preparation even before the
o�cial XP release.

3Though most users may have in mind frozen programs, software errors can, however, cause
more severe losses. United States' losses due to software problems are estimated at USD 59.5
billion, which is 0.6% of GDP. According to Stanford Research Institute, most of these problems
are due to lack of testing.
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discrimination based on an upgrade scheme. As we shall see, a di�erent approach

to a pricing strategy leads, in turn, to a di�erent evolution of software quality. Soft-

ware developers often motivate users to switch more frequently to a new version of

the product by lowering the price in the case where users own the previous version.

Thus, a user faces two options: to switch to every new version to get the upgrade

price, or to switch only from time to time for the full price4. In the real world,

upgrade prices are predominantly used for business software. The ratio between

upgrade and full price varies according to the developer's position on the market,

the necessity to have updated software, and innovation frequency5.

Because the average time between releases of new versions is short6, users have to

familiarize themselves with new software on a very regular basis. When an old ver-

sion becomes su�ciently outdated, the users' willingness to switch to new software

grows, and software obsoleteness becomes crucial to both users' and developers' de-

cision processes. This willingness, however, varies among the users so di�erent users

tend to switch to new software with di�erent frequencies and the distribution of

software among users is in each period di�erent.

In order to model the above phenomena, we put forward a dynamic model en-

vironment in which there is, on the one side, a software monopolist who introduces

a new version (quality) of software all the time (or every period), and on the other

side, there are consumers (or users) who are heterogeneous in their sensitivity to

software quality. That is, they buy software with a di�erent frequency depending

on their currently possessed software version. We assume that there is no second-

hand market for software and that the developer sets its prices at the outset for the

whole horizon. That is, he sets either a single price (in the absence of price discrim-

ination) or a pair of prices, whereby a lower price is charged to the consumers who

buy new software every period. Since software is perfectly durable and developers

keep introducing new versions all the time, the model has to deal with a growing

number of software versions. In other words, at the given point in time, consumers

as a whole possess both the newest and the older versions of software while the total

number of versions increases over time. Since each new product carries a quality

improvement over the preceding one, it is natural to assume vertical product di�er-

entiation in such a market. In such a setup we also study the �consumer side� of the

market, explaining consumers' dynamics in switching or staying at a given software

4Nevertheless, sometimes users need not be motivated to switch, e.g., game players are often
willing to pay more for a new version when they own the previous version than when they have no
experience with that particular game.

5E.g., the full price for MS Windows 7 Home Premium is $199 and the upgrade price is only
$119. Very often the upgrade price is approximately 50%-70% of the full price.

6The major releases are usually between 12 and 24 months.
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and explicitly addressing the time distribution of consumers (or demand) over each

generation of product (software) in an in�nite time horizon.

We �rst assume that users have imperfect foresight in the sense that they are

unable to predict how often they would switch to a new software version in the future.

Later on, we extend our model to users with perfect foresight without changing the

developer's problem. We shall show that the perfect foresight of users, if known

to developers, increases the developers' opportunity to force users to switch more

often. The purpose of starting �rst with the imperfect foresight is that it shows

more intuitively the working of the model and makes the more general model of

perfect foresight easier to follow and understand.

The key model simpli�cation is the absence of consumers' outside option. In real-

ity, every user has outside options such as using similar software from non-dominant

developers (including open-source software) or even using an illegal copy of the soft-

ware. However, even though software prices have a signi�cant impact on the users'

decision whether to undertake piracy or not, what is more important for the extent

of software piracy is the role of government7 and the expected piracy punishment.

Thus, our model well suits markets such as business software in developed coun-

tries, where software upgrading is standard, and a high expected punishment limits

piracy. Banerjee (2003) analyzed the problem of switching from legal software to

piracy, and its social welfare impact with respect to the government's incentives

to tolerate piracy (see Belle�amme and Peitz, 2012 for a comprehensive review of

software piracy literature). We also assume away the network e�ects since their

signi�cance under monopoly is often suppressed to the role of an entry barrier. The

concept of network e�ects under a monopoly was studied by Ellison and Fudenberg

(2000) and Fudenberg and Tirole (2000).

As for the related literature, our approach shares some of the features of behavior-

based pricing with multiple products (see, for instance, Fudenberg and Tirole, 1998,

and Ellison and Fudenberg, 2000; see also Villas�Boas and Fudenberg, 2007 and

Belle�amme and Peitz, 2010 for a survey of this literature). The key feature of

this approach is that the monopolist may be able to use his information about

the consumers' purchasing history to o�er di�erent prices and/or products to con-

sumers with such di�erent histories. The two most common information structures

consistent with behavior-based pricing are the �identi�ed consumers� and the �semi-

anonymous consumers.�While the �rst category is self-explanatory, semi-anonymous

consumers are consumers who can prove that they purchased software in the last

7Usually governments only provide a legal environment, whereas actual anti-piracy force is
exerted by independent or public organizations.
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period if they wish to do so, but they can also pretend not to have bought it if this

is in their interest. So the underlying assumption in our model in which consumers

qualify for an upgrade if they buy the last version of the software can be thought

to �t the �semi-anonymous consumers� assumption. Moreover, much like Fudenberg

and Tirole (1998), and Ellison and Fudenberg (2000), we also study the provision

of �upgrades� by a monopolist in a setting of vertical di�erentiation, where there is

a consensus among customers that newer versions of the software are better than

older ones. Our analysis, however, di�ers from the above literature in some impor-

tant aspects. First, we focus on the software market, rather than on a broader class

of durable goods. This, among others, implies that the existence of a second-hand

market is not appropriate in our setting. We, unlike Fudenberg and Tirole (1998),

and Ellison and Fudenberg (2000), use an in�nite horizon model to study successive

product generations in the software market, and in this sense, we focus on the in-

centives to innovate and on the social optimal level of innovation rather than on the

very pricing decisions. As for monopoly pricing, we do not deal explicitly with the

commitment issue, and we are mostly interested in how the introduction of price

discrimination based on upgrades and the lock-in of consumers a�ect the software

quality evolution. Moreover, we analyze the two set-ups of imperfect and perfect

foresight consumers. Finally, our approach di�ers also from related in�nite horizon

models (like Fishman and Rob, 2000 or Anton and Biglaiser, 2010, see below) since

we do not use the concept of steady state equilibrium. In our model the numbers

of product versions tends to in�nity as time goes to in�nity and, respectively, the

distribution of software versions di�ers from period to period and never repeats in

equilibrium.

The analysis of Fishman and Rob (2000), however, does share some common as-

pects with our analysis. They consider a durable-goods monopolist that periodically

introduces new product models with each new model being an improvement over the

preceding one. In this light, our focus on software evolution can be viewed as a par-

ticular case of their analysis of R&D into durable-good industries under monopoly.

They, however, assume that consumers are homogeneous, and, with their focus on

social optimum, their primary �nding is that if the monopoly developer can neither

shorten the lifetime of its products nor discriminate in prices, then the monopoly de-

veloper innovates less frequently and invests less than at the socially optimal level.

They also show that if either planned obsolescence or price discrimination based

on the age of the product held by the consumer is available, then the developer

can both increase his or her pro�t and implement the social optimum.8 Much like

8There are many papers that build upon or deal with other aspects of Fishman and Rob (2000).
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Fishman and Rob (2000), Anton and Biglaiser (2010) also study an in�nite horizon

model with steady quality improvement in a durable goods monopoly setup keeping

the assumption of the identical (homogenous) consumers. They, however, focus on

pricing and adoption, taking innovation as exogenous and, among other things,

study the developer's optimal decision on which bundles and prices to o�er. Com-

ing back to Fishman and Rob's (2000) paper, a peculiar feature of their analysis

is that the homogeneity of consumers leads to every new product being purchased

by all consumers. However, real durable-goods markets, and the software market in

particular, are characterized by the simultaneous presence of both the newest and

the previous products in the consumers' ownership. That is to say, while there are

consumers who use the newest product, there also are consumers who keep using

previous ones. As each new product represents a quality improvement over the pre-

ceding one, vertical di�erentiation is inherent in such markets; so, as already stated

above, we allow for consumer heterogeneity with respect to taste for quality that

captures this property. In addition, while Fishman and Rob (2000) show that a

price discriminating monopolist is able to fully implement the social optimum, they

assume that the price discrimination is of the �rst-degree type. This is in the sense

that the developer is able to freely change the price according to the age of the

product currently owned by the consumer. In our approach, the price discount is

only o�ered to those who own the immediately preceding version, which is a more

realistic setting of behavior based on third-degree price discrimination. We show

that if the developer can set di�erent prices for the upgrade and the full version,

then the social welfare resulting from the monopolist's optimal action in the limit

approaches the social optimal level irrespective of whether the users have perfect

or imperfect foresight. The limit in question is the fraction of users who are not

"locked-in", that is, the users who do not switch every period, and this fraction

tends to zero. Alternatively, the switching frequency of these users (whose measure

tends to zero) goes to in�nity. We also show that the popular notion according to

which upgrade prices help to spread software and lead to lower price levels does not

hold if di�erent prices for the upgrade and the full version are used.

The paper is organized as follows. In the second chapter, we set up the model

that serves as the general framework for our analysis. The �rst part of the article (the

For instance, Atil et al. (2008) show that a competitive environment or after-market leads to a
lower investment in R&D. Mehra and Seidmann (2008) focus on the life-cycle management of
software products and show how the optimal upgrade changes throughout the life cycle based
on whether there are heterogeneous customers, externalities, or product incompatibilities. Nahm
(2004) focuses on the interaction between inter-temporal pricing and R&D decisions based on the
pricing regimes (net sales vs. buyback). Other papers investigating obsolescence include Echevarría
(2005), Wang and Hui (2005), and Inderst (2008).
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third, fourth, and �fth sections) deals with the choice of a software upgrade versus

the full-price version in an environment where users have imperfect foresight. More

speci�cally, in the third section, we analyze the developer's behavior without price

discrimination, and in the fourth section, we focus on price discrimination based

on a lower price of upgrade. Finally, in the �fth section, we analyze the impact of

price discrimination on prices, software quality evolution, and social welfare. The

next three sections constitute the second part of the article, where users are now

assumed to have perfect foresight. In sections six to eight, we replicate our analysis

from sections three to �ve, but now with the assumption of perfect foresight. In

addition, in section seven, we study the monopolist's tendency to initiate lock-in

behavior. In the ninth section, we discuss the results obtained across all sections

and point out the di�erences between an imperfect versus perfect foresight set-up.

Section ten concludes.

2 The model

2.1 Basics

There is a monopoly software developer who releases a new version every period.

The timeline starts in period 1, when the �rst version of the software is released,

and continues inde�nitely.

When a user buys software, he can use the version purchased forever without any

additional fee. All versions of software are in�nitely durable without depreciation.

However, the developer sells only the latest version of the software every period,

whereas older versions are not sold anymore. Besides that, the developer outlaws

any resale by a license agreement with the user. We assume that users have no

outside option like piracy or open-source software, so all users are fully dependent

on the developer's o�er.

Price discrimination

While only the current software version can be sold in every period, the developer

is allowed to price discriminate by setting di�erent prices for the same version along

with the eligibility rules for a consumer to qualify for a given price. We assume that

in every period it is impossible that there is a user who is completely ineligible to

any price o�ered in the period. In general, the developer can discriminate based on

the history of the user's previous actions, and the rules may change between periods.

In this paper, we make the following two assumptions.
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First, the only thing the developer can observe about a speci�c user in any

period is the software version (if any) possessed by the user. Thus, the only way

the developer can price discriminate is based on the age (in periods) of the software

version in the user's hands.

Second, we assume that the developer's pricing policy is stable over time. Namely,

the prices o�ered in period t and the corresponding eligibility rules do not depend

on t. We concentrate on the following two cases:

• The single price, when every version is o�ered at the same price p to all users

in every period.

• The �new user� versus an �upgrade�, when in every period t anyone can buy

at the �new user� price p2, but the users who purchased the software version

immediately preceding the current one, i.e., the version of period t − 1, and

only those users, are entitled9 to buy at the �upgrade� price p1, with p1 and

p2 constant across periods. Here those who own older versions, but not the

immediately preceding one, are treated as �new users� just as those who own

no version at all.

Remark 1. One of the key assumptions we make is that the monopolist is able to

precommit to its price(s). That is, the monopolist sets price(s) in the �rst period

and keeps them unchanged thereafter. In other words, the famous Coase conjecture

that a price setting monopolist in an inter-temporal set-up may not commit to its

future prices is not an issue in our set-up. The reason for this may, for instance,

be that, besides permanent upgrades, our monopolist has a reputation for sticking

to his or her pre-announced price or has �xed production capacity that servers as a

commitment device against future price decreases, and so forth.10(See more on the

durable-good monopoly with commitment in Belle�amme and Peitz, 2010, and also

see Fudenberg and Villas-Boa on behavioral based price discrimination and Stole's

survey on price discrimination, 2007.)

9Generally, it is possible to introduce more di�erentiated upgrade prices, e.g., for users who
possess the version from the second latest period, the third latest period, and so on. Doing that
would not substantially change our results in any way, but the structure of the model, as well as
overall results, would become less transparent.

10There is, however, an alternative micro-foundation approach which explains the price rigidity
by means of rational inattention (see, for instance, Sims, 2005). In the realistic case when this
inattention appears on the consumers' side, a frequent price changes may require consumers to
pay a lot of attention to the price. That, in turn, may be irritating for the consumers so in the
end, they could decide to consume less. As a result, it would be optimal for the seller to choose
his pricing strategy in advance and commits to it (see Mat¥jka, 2010). Moreover, this may also
explain the empirical observations that real-life developers are observed to keep roughly constant
prices over longer period of time.
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Quality and R&D cost

We denote software quality in period t as Qt. For simplicity, we treat quality as

a one-dimensional variable that can be viewed as a weighted linear combination

of all characteristics (performance, design, stability, and security, amid others) In

fact, exact quality cannot be measured, so we measure the quality indirectly by the

willingness to pay for a product.

As resale is outlawed, there is no outside option for the users, and any version is

in�nitely durable with no depreciation, and the only trigger for new demand is an

improvement in software quality that persuades users to replace their older version

of software11. In our model, we introduce the developer's cost of software quality

improvement ∆Q, which is in fact the cost of R&D. All other developer costs are

normalized to zero. We assume that the cost of software quality improvement is

increasing in quality ∂C(∆Q)
∂∆Q

> 0, and we assume that costs are convex ∂2C(∆Q)
∂∆Q2 > 0.

This condition means that gradual quality improvement (e.g., to improve quality by

1 every period for the next three periods) is cheaper than a signi�cant quality jump

(e.g., to improve quality by 3 within one period and then no improvement in next 2

periods). Both conditions are satis�ed for quadratic functions; so, we use

C(∆Q) = B̄ · (∆Q)2, (1)

where parameter B̄ > 0 re�ects R&D e�ectiveness.

Improving software is a longtime process based on cumulative activities like

learning by doing. Thus, the developer cannot increase software quality simply by

hiring a large number of new programmers in one period. To achieve signi�cant

progress in quality improvement, the developer must decide about the targeted

future quality several periods in advance. The developer does so by deciding on

the maximum evolution quality improvement in period t, Kt, at least n periods

before period t. Then in period t, software quality improvement is limited to ∆Qt =

Qt − Qt−1 ≤ Kt and cannot be exceeded12. In reality, n may be several years. In

our model, we assume n → ∞; hence, the developer decides about the evolution

capacity once and for all.

In line with the assumption of stable prices and eligibility rules, we assume

that the evolution capacity is stable over time, Kt = K for all t. The capacity

11The model can be generalized by introducing the probability of failure. Nevertheless, we then
get total demand as a linear combination of demand stemming from technological improvement
and demand coming from physical depreciation. The total result will be in�uenced by the weights
put on each source without changing the core of the result.

12This is a simpli�cation helping us to focus the paper on price discrimination.
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is assumed to be fully utilized in every period. Thus, a monopolist releases new

software versions with constant quality improvement at the maximum capacity level,

that is, Q = ∆Qt = Qt − Qt−1 = K each period t. If the initial quality in period t

is Qt, then the quality in period t+ l is Qt+l = Qt + l ·Q.
As all developer choice variables are stable (namely the prices and the quality

jump), we assume that they are chosen in the very beginning. Note that in our

framework, quality adjustment choice and capacity choice are basically equivalent

since in selecting capacity K in the beginning, the developer intends to fully use

this capacity to achieve quality improvement Q = K in every period.

2.2 Users

We assume an in�nite number of heterogenous users on the market. The users

di�er in their sensitivity θ to product quality, where θ is uniformly distributed and

is normalized13 to interval 〈0, 1〉. Users with θ close to 1 primarily prefer quality,

while users with θ close to 0 are very price sensitive. Users' discount factor between

periods is β ∈ [0, 1), which is assumed the same14 for all users.

At the beginning of every period, a user may either own no software version

at all or own a software version from some of the previous periods. If no version

of software is owned, then a consumer faces a question: �Buy the software now

or wait for another period when the consumer value of the new software, because

of a higher product quality, will increase.� If a previous software version is owned,

then the question is: �Buy the new version now or wait until the consumer value is

increased and meanwhile continue using the old version.� We can consider owning

no software as owning the �zero version,� whose quality is Q0 = 0.

Consider a user of type θ who owns a version of quality Qt in period t. If this

user decides not to buy the newest version, then this user's utility �ow in period t is

θQt. This implies that users have zero utility �ow before they buy software for the

�rst time. If this user buys the newest version, whose quality is Qt, at price pt, then

this user's utility �ow in period t is θQt − pt. Note that pt can di�er among users

due to the developer's eligibility rules. However, if a user happens to be eligible for

more than one price in a given period, then the lowest of these prices will be used

as pt.

In the paper, we separately analyze two cases of user behavior:

13We could also explicitly introduce a �market size� parameter by assuming that the density of
θ is a positive constant rather than exactly 1, but this is e�ectively captured by parameter B̄ in
the developer's cost function as demonstrated below.

14In other words, we assume that all heterogeneity among users is captured by θ.
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• Users with imperfect foresight or myopic users, who make a decision whether

or not to buy software based only on the comparison of the utility of having

(or not having) the current product in the current period, while ignoring their

eventual switching to new software. In calculating their utility, these users

assume that they would keep the current version forever.

• Users with perfect foresight, who know exactly in which period they would

switch to a new version; these users calculate their utility �ow precisely in

advance.

The decision of users with imperfect foresight

An imperfect foresight user of type θ who owns no software until period t, switches

to software of quality Qt at price pt in period t, and who never switches again, has

the following in�nite utility �ow from period t onwards:

Ut = θ(Qt + βQt + β2Qt + . . . )− pt = θ
1

1− β
Qt − pt. (2)

For simplicity, denote qt = 1
1−βQt and the utility �ow of a user θ from buying

software of quality qt for price pt in period t as

U θ(qt, pt) = θqt − pt. (3)

It is obvious that a new user θ strictly buys software at period t if and only if

U θ(qt, pt) > 0. The marginal user who is indi�erent15 between buying and waiting

for some next period has sensitivity parameter θ = pt
qt
.

The previous decision process, however, does not cover a user who already pos-

sesses a version of software. Consider now an imperfect foresight user of type θ who

possesses the software of quality Ql from period l. Such a user has already ensured

utility �ow U θ = θQl at every period t ≥ l. He decides to switch to new software

that would bring him U θ = θQt if and only if the di�erence in quality o�sets the

disutility from price pt. It implies that he buys in period t if and only if

U θ(qt, pt) = θqt − pt ≥ θql = U θ(ql). (4)

If the quality change is not su�cient to compensate for the disutility from the price

(if θ(qt−ql) < pt), then the user does not buy now, uses his older version from period

15Indi�erent consumers can either buy or not, and it is useless to restrict them, for example, to
buy because their measure is 0 even if their number goes to in�nity as t tends to in�nity.
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l, and waits until the next period t+1 when he enters into the decision process again

and when he compares the utility �ow θql with θqt+1 − pt+1.

As can be seen from the user decision process described above, the users do

not foresee future software quality levels Qt and prices pt so that each period they

look at the actual quality o�ered by the developer and decide based on the current

price. In this case, the users cannot foresee the exact time they would switch to a

new product. These users simplify their decision process by simply comparing the

inde�nite utility �ows from the old and current software versions ignoring their own

future decision on software choice.

The decision of users with perfect foresight

Perfect foresight means that every user can foresee future quality levels Qt and prices

pt in every period t. Then a perfect foresight user faces the following problem in

every period. Let U l
t be the user's discounted utility �ow in period t given that the

version from period l ≤ t with quality Ql is used during this period, and let Ut be a

shortcut for U t
t . Let p

l
t be the minimal price the user is eligible for in period t given

that the version from period l is owned. If the currently owned version l < t is used

for n periods on and then a new version is bought in period t+ n, then

U l
t = θQl

(
1 + β + · · ·+ βn−1

)
+ βnUt+n, (5)

whereas if the new version t is purchased at price plt and then used for n periods,

when another new version is bought, then

Ut = −plt + θQt

(
1 + β + · · ·+ βn−1

)
+ βnUt+n. (6)

In every period, the user chooses (i) between buying and not buying and (ii) for

how long to keep the version, given the anticipated quality and price development,

which can be generally written as a dynamic programming problem. Given our

assumptions about the stability of prices, pricing rules, and quality improvement,

U l
t solely depends on the di�erence t − l in the sense U l+m

t+m = U l
t for any integer

m ≥ 0. An interpretation of this is that the consumer has a guaranteed utility level

of θQl per period, which amounts to the discounted �ow of θ Ql

1−β = θql, and decides

on the basis of added utility so that equations (5) and (6) can be re-written as

U l
t − θql = βn (Ut+n − θql) (7)
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if the consumer does not switch in period t, and

Ut − θql = −plt + θ (Qt −Ql)
(
1 + β + · · ·+ βn−1

)
+ βn (Ut+n − θql) (8)

= −plt + θ (qt − ql) + βn (Ut+n − θqt) (9)

if the consumer switches in period t.

As a particularly important example, consider a user with a high sensitivity θ,

who buys every period and he is aware of this. Given the stability of prices (pt = p

or pt = p1) and quality improvements (Qt = Qt−1 + Q, so that qt = qt−1 + q), the

last equation takes the form

Ut − θqt−1 = −p+ θq + β (Ut+1 − θqt) (10)

for every t. In�nite iteration of this equation yields (for β < 1)

Ut − θqt−1 = (−p+ θq)
(
1 + β + β2 + · · ·

)
=

1

1− β
(θq − p) , (11)

so that a necessary condition for a user with perfect foresight to switch every period

is θq − p ≥ 0.

Notation 1. We denote the user who buys every period as a high-end user and

a user who buys less frequently than every period as a low-end user.

Regularity of upgrades

In general, if prices, quality improvement, and eligibility rules vary over time, so

may vary the users' decision whether to buy the new version or keep the currently

held one for another period. However, the ensuing stability assumptions lead to the

following result, which substantially simpli�es further analysis.

Proposition 1. Let prices, quality improvement levels, and price eligibility

rules be constant over time, and let the developer's pricing policy be either �upgrade�

price p1 versus �new user� price p2 or single-price p1 = p2 = p. Then it is optimal

for a user with either imperfect or perfect foresight to switch regularly, i.e., there

exists a period T ≥ 0 and a natural number n = n(β, θ, p1, p2, Q) such that the user

switches in periods T , T + n, T + 2n, . . . , and in no other period. In addition, n is

non-increasing in θ.

Proof. The existence follows from the facts that the initial utility is zero, the

per-period quality improvement is positive, and the prices are stable. Then ∃T such

that Q0 + T ·Q > max{p1, p2}.
Regularity under the single price stems from the fact that the user faces exactly
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the same problem in every period. Regularity under �upgrade� versus �new user�

prices follow from the analysis in section 4 (imperfect foresight) and 7 (perfect

foresight). �

In addition, the fact that n is non-increasing in θ follows from the �θQ − p�

utility structure: as θ increases, the user will not decide to purchase new versions

less frequently, which means that n will not decrease.

While we show in this proposition that it is an optimal solution to upgrade

regularly, it is actually the optimal behavior for all users except for those indi�erent

between two switching frequencies. However, such users are of measure zero and

can be thus neglected.

Detailed descriptions of user decisions will follow in the dedicated sections. For

now, only note that the distribution of products across perfect foresight users di�ers

from the distribution of products across imperfect foresight users.

The participation constraint and foresight

From our analysis of the decision process of a user with imperfect foresight, it follows

that a necessary condition for such a user to switch every n periods at price p is

θ (qT+n − qT ) = θnq ≥ p. Using the same approach as in the derivation of (11),

we can show that the same necessary condition (which is thus the participation

constraint in our model) applies for users with perfect foresight. In addition, a user

with imperfect foresight will switch to a new product at the earliest possible moment,

so that the condition θnq − p ≥ 0 is also su�cient for the minimal n at which it

is satis�ed. However, a user with perfect foresight may decide to wait till the next

period or even longer instead of buying the new version at the �rst opportunity

when the participation constraint is met.

Consider again a high-end user with a high sensitivity θ, who buys every period

and he knows that (perfect foresight), and let the developer use the single-price

policy. While we have shown that the participation constraint for this user is θq−p ≥
0, the user has other possibilities, one of which is buying every two periods. Logically,

the user will prefer buying every period to buying every two periods if the discounted

utility �ow over a span of two periods is higher in the former case. Assume the

user decides between switching in periods T and T + 1 and in period T alone. The

discounted (at the beginning of period T ) utility �ow is then θQT −p+β(θQT+1−p)
in the former case and θQT − p + β(θQT ) in the latter case. Therefore, switching

every period is more pro�table than switching every two periods if

θ (QT+1 −QT ) = θQ ≥ p, (12)
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which is equivalent to θ ≥ p/Q. Since q > Q for β > 0, condition (12) is stronger

than the participation constraint. In the part of this paper dealing with perfect fore-

sight, we show that this condition is su�cient for n = 1 and derive the corresponding

condition for n > 1.

Remark 2. If we assumed that the user initially owns the version from period

T−1 and chooses between upgrading in periods T and T +1, and upgrading in period

T + 1 alone, the result would be the same.

Note that this decision rule has now capital Q rather than q and recall the di�er-

ence between the two: Q is the actual quality of software while q is the user-discounted

�ow of quality, q = 1
1−βQ.

Notation 2. In the rest of the paper, we will refer to both variables q, Q as

�quality� keeping in mind the di�erence between the two.

Demand

As every user switches to new software versions regularly, let dn = dn(β, p1, p2, Q) be

the measure, in terms of θ, of users who switch exactly every n periods. In general,

dn ≥ 0 (some switching frequencies can be absent) and
∑∞

n=1 dn = 1.

We assume that the developer cannot observe the exact distribution of software

versions across users, but the developer knows the function dn(·). This can be

interpreted in the sense that the developer cannot observe in which period t he

actually �nds himself, so he cannot observe software distribution across users and

assumes that all possible distributions are equiprobable (each distribution appears

in the whole in�nite model just once).

2.3 The developer's problem

The model deals with heterogenous users over in�nite number of periods, and as

t → ∞, the number of software versions the users can own goes to in�nity. The

distribution of software versions di�ers from period to period and never repeats.

Thus, the developer faces a di�erent demand function each period, which leads to

di�erent pro�t Πi, so the total pro�t would be Π∞ =
∑∞

i=1 δ
iΠi, where δ is the

developer's discount factor.

To simplify our analysis, we assume that the developer values pro�t from every

period equally16, so that the discounting factor is δ = 1. Thus, the developer's

in�nite-time pro�t maximization is equivalent to maximizing the average pro�t per

16A possible interpretation is that an increase in the user base due to network e�ects exactly
o�sets the discounting of future earnings.
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period. In the rest of the paper, we will assume that the developer maximizes the

following pro�t function:

Π = lim
n→∞

1

n

n∑
i=1

Πi. (13)

Remark 3. Fixing quality jump forever and maximizing average pro�t per pe-

riod are key simpli�cations in the model that would allow us to reach an analytical

solution while keeping the rest of the assumptions very �exible (in�nite number of

di�erent products, in�nite heterogenous customer, in�nite number of users groups

with di�erent decisions). These simpli�cations are not so far from empirical obser-

vations given the fact that real-life developers are observed to keep roughly constant

prices over several periods and to improve their products gradually.

Remark 4. As we already argued, the simpli�cation with maximizing average

pro�t corresponds to the situation where the developer cannot observe in which pe-

riod he actually �nds himself, thus he assumes that all possible version distributions

across consumers are equiprobable. In other words, the developer views pro�ts in

di�erent periods as independent and identically distributed random variables (due to

price and quality adjustment stability), so that the limit in (13) equals the average

per-period pro�t by the law of large numbers, and maximizes the average pro�t across

all distributions. In fact, this is the same problem as stated in equation (13) except

the constant.

More speci�cally, the developer knows the demand function dn, so that in every

period the share d1 of users will buy the new version (at price p1), whereas for each

n > 1, only 1
n
of those users who switch only in every n periods will buy on the

average (at price p2, note that p1 = p2 = p for the single price policy). Then the

average per-period revenue equals p1d1 + p2

∑∞
n=2

1
n
dn, whereas the developer's cost

equals B̄Q2 per period. Thus, the developer's pro�t per period can be rewritten as

Π = p1d1 + p2

∞∑
n=2

1

n
dn − B̄Q2. (14)

Also denote B = B̄(1 − β)2, and recall the notation q = Q
1−β , which allows the

expression of the developer's cost as Bq2, a form we will prefer with imperfect

foresight17.

Notation 3. The number of high-end users, d1, will be also denoted NH . The

average number of low-end users who switch in a given period,
∑∞

n=2
1
n
dn, will be

17Parameter B̄ also e�ectively captures market size, i.e., the density of θ being a constant other
than exactly 1. In such a case, the demand dn will be multiplied by that constant, which is
equivalent (as far as pro�t maximization is concerned) to dividing B̄ by the constant in question.
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denoted NL. The average number of users who switch in a given period will be

denoted N = NH +NL.

Remark 5. Introducing discounting 0 < δ < 1 would not lead to analytical

solution and would require additional restriction on users without any impact on key

results.

2.4 Welfare

To measure the e�ciency of the monopolist developer, we traditionally use social

welfare, which consists of consumer surplus and the developer's pro�t. We use

the average per-period welfare. Recall that consumer surplus is calculated based on

qt = 1
1−βQt, so it is already discounted, and pro�ts are not discounted by assumption.

According to Proposition 2.2, every user starts buying at some �nite period and then

buys regularly. Then consider the user with quality sensitivity θ, and let n(θ) and

p(θ) be the frequency and the price at which this user switches to new versions of

the product. Then the additional utility accruing to this user at every purchase

is θn(θ)q − p(θ), which corresponds to the participation constraint, and the per-

period additional utility equals θq− p(θ)
n(θ)

. Therefore, the average per-period consumer

surplus equals

CS =

ˆ 1

0

(
θq − p(θ)

n(θ)

)
dθ =

q

2
−
ˆ 1

0

p(θ)

n(θ)
dθ.

The developer's pro�t equals revenue minus cost, and the per-period revenue

generated by a user with quality sensitivity θ, who switches to a new version every

n(θ) periods at price p(θ), equals p(θ)
n(θ)

, whence the per-period revenue equals

ˆ 1

0

p(θ)

n(θ)
dθ,

and the per-period cost equals B̄Q2 = Bq2.

Thus, the per-period social welfare equals

W = CS + Π =
q

2
−
ˆ 1

0

p(θ)

n(θ)
dθ +

ˆ 1

0

p(θ)

n(θ)
dθ −Bq2 =

q

2
−Bq2. (15)

Proposition 2. The socially optimal quality adjustment is given by

q0 =
1

4B
⇐⇒ Q0 =

1

4B̄(1− β)
.

Proof. The claim directly follows from (15). �
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3 A single price model for imperfect foresight users

3.1 User decision and products distribution across users

In this section, we analyze the case when the developer does not discriminate users

based on purchasing history and sets a single price p to all users. The developer sets

the same price p for all periods and every new version is sold for this price. In the

�rst period, when the developer starts to operate in the market, no user possesses

any version of software. The initial quality of software at time t = 0 is Q0 = 0, or,

using the notation q = Q
1−β , q0 = 0.

When the developer releases a software of quality q in the �rst period, t = 1, for

price p, it attracts the users whose utility from the software is positive: U θ(p, q) =

θq − p ≥ 0. Those users have θ ≥ p
q
(we assume p

q
< 1 and check this assumption

later), other users do not buy and wait till the next period, see Figure 1.

no product product q

0 θ = p
q

1

Figure 1: The distribution of products after the �rst period

In the second period, t = 2, the developer releases a new version of the software

for the same price p, but with an additional quality improvement q (the quality is

now 2q), and o�ers this product to both groups of the users in the market�to those

who already possess the version of software with quality q and to those who still

do not have it. Users without software buy if U θ(2q, p) ≥ 0 so from their utility

function (3) their sensitivity θ must be higher than p
2q
. Equation (3) implies that a

user who already uses the software buys a new version if and only if θ ·2q−p ≥ θ · q.
Thus, after two periods, every user with sensitivity θ higher than p

2q
uses the software

version of quality 2q. See Figure 2.

no product product 2q product 2q

0 θ = p
2q

θ = p
q

1

Figure 2: The distribution of products after the second period
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In the third period, the developer releases a software version of quality 3q for

the same price p. A user who does not own any version of software yet, buys the

new version if his sensitivity is θ ≥ p
3q

according to (3). A user who is already using

software decides according to equation (4). After the second period, users with

θ ≥ p
2q

are using software of quality 2q, so the new version of software 3q is bought

only by users satisfying θ · 3q − p ≥ θ · 2q (by those with θ ≥ p
q
). The distribution

of software is depicted in Figure 3.

no product product 3q product 2q product 3q

0 θ = p
3q

θ = p
2q

θ = p
q

1

Figure 3: The distribution of products after the third period

When we look at the distribution of software version across users, we see that

after the third period software of quality 3q is used by users with θ ∈ 〈 p
3q
, p

2q
〉∪〈p

q
, 1〉,

software of quality 2q is used by users with θ ∈ 〈 p
2q
, p
q
〉 and no one is using version

of quality q from the �rst period. Users with sensitivity to quality θ ∈ 〈0, p
3q
〉 are

not using software at all and wait until the next periods.

For further analysis of software distribution across users, we have to look sep-

arately at each group of users θ ∈ 〈 p
(n+1)q

, p
nq
〉 where n ∈ 〈1,∞). For each group,

we look which version they are using and when they actually upgrade (replace) the

product. Users with θ = p
nq

are marginal users who are, at selected periods, indif-

ferent between switching to the newest version or staying with an older version (or

not using the software at all). Continuing with the same approach, we obtain the

following distribution of versions across users (see Figure 4).

The analysis presented can be summarized by the following proposition.

Proposition 3. Users of the highest sensitivity to quality, that is, θ ∈ [p
q
, 1],

buy a new version of the software every period and users with θ ∈ 〈 p
nq
, p

(n−1)q
〉 buy a

new version every nth period. As n→∞, the measure of those who do not use any

version of software, θ ∈ 〈0, p
nq
〉, goes to zero.

It is interesting that the set of consumers who own a particular software quality

is generally non-convex, and it is possible that in a given period a consumer with

a higher quality sensitivity owns a lower quality version, as can be seen in Figure

4. However, as we are interested in average per-period values, what really matters

is how often consumers upgrade. According to the proposition above, the set of

consumers with the same updating frequency is convex, and (by the general result in
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Figure 4: The distribution of products across users

Section 2) this frequency is non-increasing in quality sensitivity. Average frequency

of switching is displayed in �gure 5.

0 p
(n+2)q

p
(n+1)q

p
nq

· · · p
3q

p
2q

p
q

1

frequency n+ 2 n+ 1 3 2 1

Figure 5: The distribution of switching frequencies across users

This is equivalent to the following demand structure.

d1 = 1− p

q
, dn =

p

(n− 1)q
− p

nq
=
p

q

(
1

n(n− 1)

)
, n ≥ 2. (16)
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3.2 The developer's problem

The developer's pro�t per period is generally given by (14), which, after taking into

account the single price policy and substituting (16), takes the form

Π = p

(
1− p

q

)
+ p

∞∑
n=2

p

q

1

n2(n− 1)
−Bq2.

Denote

D =
∞∑
n=2

1

n2(n− 1)
= 2− π2

6
≈ 0.355,

so that the pro�t can be written as

Π =

(
1− p

q

)
p+

p

q
Dp−Bq2. (17)

The developer maximizes the pro�t by setting optimal p and q.

Proposition 3. If the users have imperfect foresight and the developer uses the

single price policy, then the developer's choice of price and quality, and the implied

price-quality ratio, are the following.

p∗ =
1

16 (1−D)2B
, q∗ =

1

8B (1−D)
,
p∗

q∗
=

1

2 (1−D)
. (18)

In addition, equilibrium numbers of users are

N∗H = 1− p∗

q∗
=

1− 2D

2− 2D
, N∗L =

p∗

q∗
D =

D

2 (1−D)
, N∗ = N∗H +N∗L =

1

2
, (19)

so that and exactly half of the users (on average) are switching every period.

Proof. The optimal price and quality are obtained from F.O.C.; S.O.C. are

checked in Appendix 11.3. Equilibrium numbers of users are obtained directly from

(18). �

Substituting D into the equilibrium, we obtain:

p∗ =
9

4B (π2 − 6)2 '
0.150262

B
, (20)

q∗ =
3

4B (π2 − 6)
' 0.193818

B
, (21)

p∗

q∗
=

3

π2 − 6
' 0.775 273. (22)

(Note that the last equality also proves that the assumption p
q
< 1 was correct.)
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0 n+1 n 4 3 2 1 1

eligible only for full price eligible for upgrade

Figure 6: Market distribution in non-lock-in

Substituting back into (17), we obtain the developer's pro�t:

Π∗ =
1

64B (1−D)2 =
9

16B (π2 − 6)2 '
0.037565

B
. (23)

Summary 1. In this section, we derived monopoly equilibrium and distribution

of user if only one price is allowed. As for the equilibrium price, this is in line with

Stokey (1979, 1981) who shows that in a dynamic durable-good context when the

developer can commit to the time path of prices, the monopolist precommits to the

same price in all periods, which coincides with the static monopoly price. Like in

many static models, the developer sells on average to exactly half of all users; so

equilibrium price and quality are set to reach those half of the users every period.

The quality upgrading that the monopolist chooses is below the social optimum due

to the standard argument that the single - price monopolist cannot appropriate the

whole surplus it generates. Finally, note that the proportion of the users who buy

software is independent on factor B.

4 Imperfect foresight users and price discrimination

In this section, we analyze the situation when the developer o�ers a lower �upgrade�

price p1 to users who own the version from the previous period. The rest of the

users, who are using older products, are not eligible for the lower price and could

buy the new version only for a standard �full� price p2. Denote the quality o�ered

by the developer in this section Qe, and qe = Qe

1−β .

If the upgrade price p1 is only slightly lower than the full price p2, some users

who would buy every second period for price p2 now prefer buying every period for

price p1; however, all users who buy every three periods do not change their decision

and still buy every three periods. This leads to market coverage as in Figure 6.

In the case of a higher discount for upgrading users, not only those who would

buy for price p2 every two periods, but even users who would buy less frequently

than every n ≥ 3 periods would now switch every period. This market situation

leads to market coverage as in Figure 7.
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eligible only for full price eligible for upgrade

Figure 7: Market distribution in lock-in

We shall refer to the former case, where a user with all switching frequencies are

present on the market, as to the �non-lock-in� case, while the latter case, where some

frequencies of switching are out of the market, will be referred to as the �lock-in�

case. We shall analyze both cases, and we start with the non-lock-in market.

4.1 The �non-lock-in� set-up

Assume in this part that the upgrade price is p1 ∈ 〈p22 , p2〉. This condition will

guarantee that all frequencies of switching are present in the market. (We show

later that this condition is satis�ed in equilibrium.) Let us separate the revenue

generated by upgrade versions and by the full versions. We see that only users

with sensitivity parameter θ greater than p1
qe

buy every period. These users generate

revenue denoted as R1. The rest of the users, who are not eligible for the upgrade

price, generate revenue R2. The full-price demand is similar to the single price case

as in equation (16) with the exception that some users who would switch every two

periods at p2 now switch every period at p1.The measure of those users is
(
p2
qe
− p1

qe

)
and since their frequency of switching was every second period in the case of a single

price, we have to adjust the average demand per period for the term 1
2

(
p2
qe
− p1

qe

)
.

Thus, the revenue functions are:

R1 =

(
1− p1

qe

)
· p1, (24)

R2 =

(
p2

qe
D − 1

2
(
p2

qe
− p1

qe
)

)
· p2,

and the developer's pro�t is:

Π =

(
p2

qe
D − 1

2
(
p2

qe
− p1

qe
)

)
· p2 +

(
1− p1

qe

)
· p1 −Bq2

e . (25)

Remark 6. Imperfect foresight means that the users with θ only slightly higher

than p1
qe
, one period after buying, will �nd it pro�table to buy the newest version at

p1, so they will buy. These users do not consider the possibility that they can be

better o� buying every two periods at p2 rather than every period at p1 whether it
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can actually happen or not.

Proposition 5. If the users have imperfect foresight, and the developer price

discriminates as described, then the developer's choice of prices and quality is the

following.

p∗1 = 4
(1− 2D)2

(16D − 7)2B
, p∗2 = 2

1− 2D

(16D − 7)2B
, q∗e =

2D − 1

B (16D − 7)
. (26)

The equilibrium numbers of users are

N∗H =
3− 8D

7− 16D
' 0.120909,

N∗L =
2D − 1

16D − 7
' 0.219772, (27)

N∗ = 2
2− 5D

7− 16D
=

5π2 − 48

8π2 − 75
' 0.340681.

Proof. The optimal prices and quality are obtained from F.O.C.; S.O.C. as well

as the condition p1 ∈ 〈p22 , p2〉 are checked in Appendix 11.4. The numbers of users

are obtained directly from these values. �

Substituting D into the equilibrium, we obtain:

p∗1 =
4

B

(π2 − 9)
2

(8π2 − 75)2 '
0.193200

B
, (28)

p∗2 =
6 (π2 − 9)

B (8π2 − 75)2 '
0.333255

B
, (29)

q∗e =
(π2 − 9)

B(8π2 − 75)
' 0.219772

B
, (30)

p∗1
q∗e

=
4π2 − 36

8π2 − 75
' 0.879090, (31)

p∗2
q∗e

=
6

8π2 − 75
' 1.516363. (32)

substituting (26) into (25), we obtain the developer's pro�t:

ΠD∗ =
1

B

(2D − 1)2

(16D − 7)2 =
1

B

(π2 − 9)
2

(8π2 − 75)2 '
0.048300

B
. (33)

Lemma 1. If the users have imperfect foresight, and the developer uses either the

single-price policy or �non-lock-in� price discrimination, then all equilibrium prices,

qualities, and pro�ts are dependent on the discount factor β, and all of them are

increasing in β. On the other hand, the numbers of switching users N∗H , N
∗
L, N

∗ are
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independent on β.

Proof. Can be seen immediately from the results above by recalling that B =

B̄(1− β)2 and q = 1
(1−β)

Q. �

Remark 7. If we compare pro�t made by a single price developer and a developer

who undertakes price discrimination based on upgrades, we notice that the pro�t for

price discrimination is higher in the latter case. Clearly, the discriminating developer

always has the option to set prices equally p1 = p2. The exact relationship between

the pro�ts is given by:

ΠD∗ − Π∗ =
1

B

(2D − 1)2

(16D − 7)2
− 1

64B(1−D)2
' 0.010734

B
> 0. (34)

Remark 8. In our analysis, we neglect the fact that in the �rst period all

users should pay full price, including the users who will buy regularly every period

afterwards. This simpli�cation is in line with the basic form (13) for pro�t, which

implies that any �nite number of periods in the beginning can be neglected. Note

again, that imperfect foresight users do not predict future switching to a new version

so, for instance, they do not consider the situation that under certain prices p1, p2

they can buy a product for the full price p2 with negative immediate utility and o�set

it later on with the future positive utility �ow from upgrades. Such considerations

will be analyzed in the case of perfect foresight.

4.2 The �lock-in� set-up

In the case of lock-in, we deal with di�erent optimization problems. There are only

users who switch every period, and then there are users who switch less frequently

than every two periods. Users switching exactly every two periods are not in the

market. Consider now the general case, where only users switching every period and

then every n or more periods are in the market (further referred to as n-lock-in).

Assume p1 ∈ 〈p2n ,
p2
n−1
〉. (Again, we will show later that this condition is satis�ed in

equilibrium.)

Remark 9. Note that from a mathematical point of view, non-lock-in is a par-

ticular case of lock-in at n = 2 (�2-lock-in�).

Denote θ1,n a user who is indi�erent between switching every period and every

n periods, and θn,n+1 = p2
nqe

is the user who is indi�erent between switching every n

and every n + 1 periods. Denote again revenue from users switching every period

as R1 = (1− θ1,n) · p1. From users utility function (3) in view of Remark ??, we

see that a user indi�erent between switching every period and every n periods is a

user with sensitivity to quality θ1,n = p1
qe
, so the revenue from users switching every
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period is R1 =
(

1− p1
qe

)
· p1.

Revenue from users switching less frequently consists of revenue from users who

switch every n periods: 1
n
(θ1,n − θn,n+1)p2 and from users switching even less fre-

quently p2
qe
Dn+1p2:

R2 =
1

n
(θ1,n − θn,n+1) p2 +

p2

qe
Dn+1p2,

where

Dn+1 =
∞∑

m=n+1

1

m2(m− 1)
=

1

n
− ψ1(n+ 1),

where ψ1(·) is the polygamma function of order 1.

Remark 10. As could be seen directly from the de�nition, Dn is decreasing and

goes to zero as n goes to in�nity.

Summing up the revenue for both groups R1, R2, taking into account the devel-

oper's costs Bq2
e , and re-arranging, we obtain the developer's pro�t function:

Π =
p2

nqe
(p1 + p2 − np2ψ1(n)) +

(
1− p1

qe

)
p1 −Bq2

e . (35)

Proposition 6. If the users have imperfect foresight and the developer price

discriminates so that no user switches every 2, . . . , n−1 periods, then the developer's

choice of prices and quality is the following.

p∗1 =
n2

B

(nψ1(n)− 1)2

(4n2ψ1(n)− 4n− 1)2 , p
∗
2 =

n2

2B

nψ1(n)− 1

(4n2ψ1(n)− 4n− 1)2 ,

q∗e =
n

2B

nψ1(n)− 1

4n2ψ1(n)− 4n− 1
,

and the average number of switching users per period is:

ND∗ =
n(1 + 2n)ψ1(n)− 2(1 + n)

4n2ψ1(n)− 4n− 1
. (36)

Proof. The optimal prices and quality are obtained from F.O.C.; S.O.C as well

as the condition p1 ∈ 〈p2n ,
p2
n−1
〉 are checked in Appendix 11.4. The value ND∗ is then

derived by substitution. �

Substituting p∗1, p
∗
2, q
∗
e into the pro�t function (35), we obtain the equilibrium

pro�t:

Π∗ =
n2

4B

(nψ1(n)− 1)2

(4n2ψ1(n)− 4n− 1)2 .

Remark 11. By substituting p∗1, p
∗
2, q

∗
e into the de�nition of indi�erent users,

we see that in equilibrium the indi�erent users are:
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θ∗
1,n

=
p∗1
q∗e

=
1

2

(
1 +

1

4n2ψ1(n)− 4n− 1

)
, θ∗n,n+1 =

p∗2
nq∗e

=
1

4n2ψ1(n)− 4n− 1
.

Lemma 2. If the developer uses n-lock-in under imperfect foresight, then as n

increases, the average number of switching users decreases, and equilibrium qual-

ity change, both prices, both prices per quality change, and the developer's pro�t

increase. In addition, the equilibrium quality converges from below to the socially

optimal value q0 = 1
4B

as n increases.

Proof. Directly follows from the results above. �

The last result implies that the best strategy for the developer in our model

is to set n close to in�nity. This result is caused by the set-up of our model,

where the developer is maximizing average pro�t. Thus, the developer does not

di�erentiate between pro�t realized in the �rst period and pro�t from a period close

to in�nity. Maximizing the average pro�t instead of the discounted �ow of pro�t is

a simpli�cation to obtain an analytical solution18. However, remark that for those

who switch every n periods, the developer starts receiving revenue from this group

for the �rst time at period n; thus, it would be natural to assume that the pro�t

from this group is discounted by βn, which would immediately imply that for β < 1,

the optimal n is �nite.

5 Imperfect foresight users: comparisons and wel-

fare analysis

5.1 A single price versus price discrimination

In this section, we contrast price discrimination with the single price equilibrium, so

we compare changes in quality, prices, prices per unit of quality change p∗

q∗
, the total

number of switching users, and welfare for both cases. We do the comparison for

the �non-lock-in� case and then extend the results to the general �lock-in� case via

Lemma 4.2. The proofs of the results stated here are made by direct arithmetical

comparison of the relevant results above and are thus omitted.

Lemma 3. The product quality in the case of a single price is lower than the

quality set by the developer discriminating the users based on upgrades.

This result is in line with the general view of the impact of price discrimination.

18Introducing the discounted developer pro�t would require a numerical solution even for the
simplest possible case of the single price and imperfect foresight.
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From a purely quality point of view, the developer using price discrimination based

on a lower price of the upgrade accelerates quality evolution more than a single price

monopoly.

Lemma 4. If price discrimination based on a lower upgrade price is not possible,

the single price p∗ is lower than the full price p∗2, and even lower than the price of

an upgrade version p∗1.

This result may be counter-intuitive at �rst sight as we should be aware that

the quality q∗e > q∗, so the higher price even for upgrades is justi�ed by a quality

change.

Another insightful comparison we obtain if we compare the price per quality19,
p∗

q∗
.

Lemma 5. The equilibrium price per quality p∗

q∗
is lower if possibility for dis-

crimination does not exist, that is p∗

q∗
<

p∗1
q∗e
<

p∗2
q∗e
. Consequently, the number of buyers

is higher for a developer that charges the single price.

Lemma 6. The proportion of users buying in every period in the case of a single

price is higher than in the case of price discrimination.

This is a very interesting result. Generally, the motivation for price discrimi-

nation is to increase revenue by increasing the number of users. In standard price

discrimination, the price for a more sensitive group is lower than for the other groups,

and it is pro�table to sell till the price reaches marginal costs.

On the other hand, a lower price for upgrades persuades some users to buy more

frequently which, in turn, raises the number of users. The key factor of this price

discrimination is that the discount is not o�ered to the most price sensitive users

but to the most quality sensitive users. A possible interpretation of this is that price

discrimination by using upgrades helps the developer to better separate the quality

sensitive users buying in every period and to accelerate software evolution (recall

that the quality change is higher under price discrimination) to �t their demand

better. As for the low-end users, the full price for the software is set very high

because the developer knows that even though their sensitivity for quality is lower,

the fact that they possess an older version means that their valuation of the new

software eventually becomes relatively high; thus, these users will buy sometimes as

well. Accelerating software evolution enables the developer to charge a higher price

to all of them. In a single-price model, the developer values low-end users relatively

more, so he must attract a higher number of users by keeping both price and quality

lower.

19Though in the literature the inverse, i.e., quality per price unit. qp is usually used for comparison,

we use p
q as it plays a key role in the distribution of switching customers in our model.
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Remark 12. Note, that in our comparison, when we compare single price and

price discrimination equilibria, we have di�erent equilibrium qualities q∗ < q∗e . Thus,

the higher prices (and the lower number of users) in the price discrimination case

is partially caused by a higher equilibrium quality. For a better understanding of

this e�ect, we can decompose �moving� from the single price equilibrium to the price

discrimination equilibrium into two steps. In the �rst step, we �x quality at the single

price equilibrium level q∗ while allowing price discrimination, and in the second step,

we adjust quality (and prices) to their pro�t-maximizing levels. This analysis is

performed in Appendix 11.5.

The results above apply to the �non-lock-in� case. It follows from Lemma 4.2that

if the developer decides to use n-lock-in, the results above are reinforced as n in-

creases.

5.2 Welfare analysis

In this section, we analyze welfare changes by comparing price discrimination and

single-price equilibria. We analyze consumer surplus (CS) for all, low-end and high-

end users, as well as social welfareW , which is consumer surplus plus the developer's

pro�t. For all these variables, we compare their average per-period values (in fact,

all these di�er from period to period). The values for a single-price developer can

be found in Appendix 11.5, and the values for a price discriminating developer can

be found in Appendix 11.5. In particular, the average CS per period under a single

price equals

CS =
1

32

1− 2D

(1−D)2B
≈ 0.021778

B
,

and under price discrimination with n-lock-in, the average CS per period equals

CS =
1− (4n2ψ1(n)− 4n− 1)

−2

32B
.

The following results are proved by direct comparison of the values derived in

Appendices 11.5and 11.5.

Proposition 7. The consumer surplus is higher in the case of a single-price

monopoly than under non-lock-in price discrimination and decreases in n as n-lock-

in is used.

The consumer surplus for both high-end and low-end users is higher in the case of

a single-price developer than under non-lock-in price discrimination, and decreases

in n, and the same applies to CS per buyer for high-end users. As for consumer

surplus per buyer for all users or for low-end users, they are higher under n-lock-in
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than under the single price except for n = 2 (non-lock-in) and n = 3, and increase

in n.

Social welfare is lower in the case of a single-price developer than under non-

lock-in price discrimination, increases in n as n-lock-in is used, and approaches the

socially optimal level from below as n goes to in�nity.

The di�erent relation between CS per buyer for all or low-end users under a

single price and under n-lock-in at n = 2 and n = 3 shows that low end users are

less important in lock in and are forced to switch less often (have higher price and

quality) and those users are less as n increases, at the same moment developer does

not increase the price per quality correspondingly which results to to higher CS per

buyer �recall that the developer prefers �in�nite� lock-in so that in the end those

CS are higher under price discrimination. See the discussion in section 8 for better

exposition.

The intuition is that as the length of the lock-in period increases, the devel-

oper becomes �more precise� in the sense of extracting more and more consumer

surplus by setting the appropriate price-to-quality ratio since the targeting group

(upgraders) becomes more narrow. Thus, per-period CS in the lock-in case tends to

zero as n increases to in�nity. In the limit (which is mathematically unreachable),

the monopolist makes all consumers pay a price of q0 per period (i.e., p2 has an

asymptotic behavior of nq0), where q0 is also the socially optimal value of quality.

Thus, much like in the case of the �rst degree price discrimination, the developer

can in the limit extract the entire consumer surplus. Unlike in the case of the �rst

degree price discrimination, however, this happens due to the dynamic nature of the

model: as n increases, the size of the largest consumer group (in terms of switching

frequency) in the market decreases, and it is easier to extract surplus from sepa-

rate smaller groups. This can be interpreted as an example of �rst-degree price

discrimination as the limiting case of third-degree one (see also the Remark before

Proposition 11).

6 Perfect foresight users: single price developer

6.1 The user decision

In this section, we analyze the developer's behavior if all users have perfect foresight.

The rest of the set-up is the same as in the previous part, which means that in every

period t, the developer introduces a new version of software and sells only this new

version. Every new version has a quality improvement Q over the previous version,

so that at period t the software quality is Qt = tQ. The decision process for perfect
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foresight users is the same as for users with imperfect foresight: users compare the

utility �ow from keeping the currently possessed version with the utility �ow from

switching to a new version. In the case of perfect foresight, however, every user can

anticipate the optimal frequency of switching to a new version. A user of quality

sensitivity θ with perfect foresight calculates the utility �ow Un (θ) from switching

every n periods (for all n ∈ 〈1,∞)), and then he decides for such switching frequency

n that brings him the maximal utility �ow. Naturally, the optimal frequency of

switching is fully dependent on the sensitivity to quality θ.

By perfect foresight user, we mean a user who calculates the utility �ow and

the optimal frequency of switching at the moment of buying a new version and

later follows this decision. Alternatively, a user may calculate the utility �ow every

period and see whether switching would bring him higher utility or whether he

should wait till the next period. When such a user calculates the utility �ow every

period, he takes into account that he will follow the same decision in the future so

he incorporates into the calculation his future decisions that are aligned with his

current decision. In the case of a single price, these two approaches are equivalent

(see Remark 6.1).

According to the analysis presented in section 2, the necessary condition for a user

with perfect foresight to switch every n periods at price p is θnq− p ≥ 0, and while

this necessary condition is the same as under imperfect foresight, it is no longer

su�cient. As mentioned above, when a user decides for an optimal frequency of

switching, he must compare the utility �ow for all possible frequencies of switching n,

where for each frequency he calculates the in�nite-time utility �ow. When doing so,

the user must calculate the utility �ow with respect to all possible future switching.

To decide between two possible frequencies of switching, the user can just compare

the utility �ow between two periods when he would always switch to a new version,

no matter which of the two frequencies of switching he would select. The simplest

example is the decision between switching every period and every two periods, which

yields the threshold of θ12 = p
Q
in (12) as analyzed in Chapter 2.

For another example, consider a user with quality sensitivity θ who is comparing

the utility �ow from switching every two periods and every three periods. Assuming

that the user decides to buy in period t, the periods when this user always switches

to a new version, no matter whether he decides for frequency 2 or 3, are periods

t + 6, t + 12, t + 18, . . . If the utility �ow from one of those frequencies is higher

for the next 6 periods, then this user naturally prefers this frequency in all of his

future decision periods t + 6, t + 12, t + 18, . . . Thus, to compare which frequency

of switching is better, it is enough in the example above to compare the utility �ow
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from 6 periods since the decision will be regularly repeated every 6 periods.

Assume now that version available in the market in period t has quality tQ.

Buying every three periods implies switching two times to a new version within six

periods. For the �rst time, the user switches in period t to the version of quality

tQ and pays the price p, and for the second time, he switches at period t+ 3 to the

new version of quality (t+ 3)Q and pays the price p again. Thus, at time t, the

discounted utility �ow from the next six periods is:

Un=3(θ) = θ
(
tQ+ tQβ + tQβ2 + (t+ 3)Qβ3 + (t+ 3)Qβ4 + (t+ 3)Qβ5

)
−p−pβ3.

(37)

Similarly, switching every two periods requires switching at periods, t, t+2, t+4,

so that the user obtains the following utility �ow from the next 6 periods:

Un=2(θ) = θ
(
tQ+ tQβ + (t+ 2)Qβ2 + (t+ 2)Qβ3 + (t+ 4)Qβ4 + (t+ 4)Qβ5

)
−

(38)

− p− pβ2 − pβ4.

Comparing the utility �ows Un=3(θ) and Un=2(θ), the user sees which frequency

of switching is better for him. From the above utility �ows Un=3(θ) and Un=2(θ), we

can immediately derive that the user indi�erent between switching every two and

every three periods has quality sensitivity

θ23 =
p

Q

1

(β + 2)
, (39)

where the user with quality sensitivity θ prefers switching every two periods to

switching every three periods if θ > θ23 and switching every three periods to switch-

ing every two periods if θ < θ23.

Remark 13. In this example, the decision process is equivalent to an alternative

decision process when a user with quality sensitivity θ at period t possesses the prod-

uct from period t − 2 and decides whether to switch or to wait till the next period.

The utility �ows are then:

Un=3 = θ((t− 2)Q+ (t+ 1)Qβ + (t+ 1)Qβ2 + (t+ 1)Qβ3 + (t+ 4)Qβ4 +

+ (t+ 4)Qβ5)− βp− pβ4,
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and

Un=2 = θ
(
tQ+ tQβ + (t+ 2)Qβ2 + (t+ 2)Qβ3 + (t+ 4)Qβ4 + (t+ 4)Qβ5

)
−p− pβ2 − pβ4.

Equating the two expressions above and solving for θ, we see again that the indi�erent

user is θ23 = p
Q

1
(β+2)

. The same result can be derived for the case when the user owns

a version from period t− 1 and chooses between waiting one or two periods. Thus,

the approaches to the decision process are equivalent, and it is not important in

which period the user makes a decision about the optimal frequency of switching.

Remark 14. From the derivation of the indi�erent user θ23 and from the previ-

ous remark, we see that the user's decision about optimal switching to a new version

is dependent only on β, Q, and p, but independent on the decision period t.

Lemma 7. Given the discount factor β, the software price p, and the per-period

quality improvement Q, the user indi�erent between switching every n and every

n+ 1 periods has quality sensitivity

θn,n+1 =
p

Q

(1− β)2

n (1− β)− β (1− βn)
. (40)

The users with θ > θn,n+1 strictly prefer switching every n periods to switching every

n+1 periods, and the users with θ < θn,n+1 strictly prefer switching every n+1 periods

to switching every n periods. This value does not depend on which version, if at all,

is possessed by the user at any given time. Moreover, this threshold decreases in β,

is not lower than the corresponding imperfect foresight value (with p and Q �xed),

and the utility �ow to the indi�erent user is non-negative so that the participation

constraint holds.

Proof. The derivation of the threshold (40) and the rest of the proof can be

found in Appendix 11.6. �

Remark 15. Note that at β = 0, (40) yields θn,n+1 = p
nQ

, which is the imperfect

foresight value (at β = 0, q = Q), and the limiting value at β → 1 is θn,n+1 =
p
Q

2
n+n2 .

6.2 Product distribution across users

Users who switch every n periods are those whose quality sensitivities satisfy θ ∈

(θn,n+1, θn−1,n); thus, substituting (40), we see that the users who switch every n
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periods are those with θ from the interval:

θ ∈

(
p

Q

(1− β)2

n (1− β)− β (1− βn)
,
p

Q

(1− β)2

(n− 1) (1− β)− β (1− βn−1)

)
, (41)

and the number of users switching with every n periods is

Nn = θn−1,n − θn,n+1 =
p

Q

(1− β)3 (1− βn)

(1− βn − n (1− β)) (β (1− βn)− n (1− β))
. (42)

The previous equations (40), (41), (42) are valid for all users who switch with fre-

quency n ∈ 〈2,∞). Users who switch every period are just from interval θ ∈ 〈 p
Q
, 1〉

(note that θ12 = p
Q
) and their number is N1 = 1− p

Q
. Summing all switching users

over all n ∈ 〈1,∞) together, we obtain that, on the average, the number of switching

users per period is:

N =

(
1− p

Q

)
+
∞∑
n=2

1

n
Nn

=

(
1− p

Q

)
+
p

Q

∞∑
i=2

1

i

(1− β)3 (1− βi)
(1− βi − i (1− β)) (β (1− βi)− i (1− β))

.

For simplicity, denote

L(β) =
∞∑
i=2

1

i

(1− β)3 (1− βi)
(1− βi − i (1− β)) (β (1− βi)− i (1− β))

. (43)

Then, given the price p, the quality improvement Q, and the discount factor β, the

number of switching users per period on the average, is

N =

(
1− p

Q

)
+
p

Q
L (β) . (44)

Lemma 8. L(β) is increasing in β, with L(0) = D = 2 − 1
6
π2 ≈ 0.355066 and, in

the limit, L(1) = 7− 2
3
π2 ≈ 0.420264.

Proof. Equation (43) cannot be generally expressed analytically for β other than
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0 and 1. To verify the statement, we used a numerical simulation where we showed

that L(β) increases in β. Selected simulation results can be found in Appendix 11.8.

The limiting values can be derived using (42) and Remark 6.1. �

Remark 16. It is clear that the introduction of perfect foresight has an impact

on the distribution of indi�erent users. If the prices and quality adjustment are

�xed, then the threshold θn,n+1 is higher under perfect foresight. This means that the

proportion of users switching less frequently is higher than in the case of imperfect

foresight.

6.3 Equilibrium

From a mathematical point of view, the problem faced by the single-price developer

when the users have perfect foresight is the same as in the imperfect foresight case.

The only di�erence, in the single price framework, between perfect and imperfect

foresight is in the numerical values of the equilibrium solution. The analytic form

remains the same with L(β) in the place of D, and the distribution of indi�erent

users is di�erent. We can use all results from the single price case under imperfect

foresight. Thus, using the pro�t function (17) derived for imperfect foresight users,

we obtain:

Π(p,Q, β) =

(
1− p

Q

)
p+ p

p

Q
L(β)− B̄Q2. (45)

Using the results from Chapter 4, we obtain:

p∗(β,B) =
1

16 (1− L(β))2 B̄
, Q∗(β,B) =

1

8B̄ (1− L(β))
,
p∗

Q∗
=

1

2 (1− L(β))
,

(46)

and the equilibrium pro�t:

Π∗(β,B) =
1

64B̄ (1− L(β))2 .

As β increases, future present value of utility �ow increases and for the same

quality jump Q∗ every user is willing to pay more; thus, the developer can increase

price p∗. However from the developer's point of view, it is the same as raising

the sensitivity to quality; thus, he can also raise produced quality, which in turn

increases his pro�t. We can summarize this in the following lemma:
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Proposition 8. p∗(β), Q∗(β), p∗

Q∗ (β), and Π∗(β) are increasing in discount

factor β and decreasing in parameter B̄, and the number of switching users in the

case of the single-price is independent on β and is equal to N∗ = 1
2
, which is the

same number as in the case of an imperfect foresight set-up.

Proof. L(β) is increasing in β, and as can be immediately seen from the equi-

librium, p∗, Q∗, p∗

Q∗ , Π∗ are decreasing in B̄, and they are increasing in L, so that

they are all increasing in β. The value N∗ is then obtained directly. �

7 Perfect foresight users and price discrimination

by an upgrade version

7.1 General set-up

In the perfect foresight set-up with discrimination by upgrades, every user sees which

frequency of switching is the best for him, and a user who switches to a new version

every period for a lower upgrade price p1 knows that not switching in one period

means that in the next period he is not eligible for the upgrade price anymore and

should pay the higher (full) price p2. If the price p2 is relatively high with respect

to the upgrade price p1, then there would be users who would rather switch every

period for a lower price p1 than switch for the full price more frequently than every

n periods. In this case, the high di�erence between the prices p1 and p2 crowds out

users with lower frequencies of switching, e.g. 2, 3, up to n− 1.

Assume that the developer sets prices p1 and p2 in a way to crowd out users who

would switch every 2, .., n−1 periods, and so, only users switching every period and

every n (and more) periods are on the market. Then denote the user indi�erent

between switching every period at the upgrade price p1 and every n periods at the

full price p2 as θ1,n, and the developer's pro�t function combines the features of the

pro�t function (45) from the perfect foresight set-up with single price as well as the

pro�t function from imperfect foresight with price discrimination:

Π = (1− θ1,n) p1 +
1

n
(θ1,n − θn,n+1) p2 +

p2

Q
Ln+1 (β) p2 − B̄Q2, (47)

where the pro�t function consist of four parts:
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1. (1− θ1,n) p1 Revenue generated by users switching every

period;

2. 1
n

(θ1,n − θn,n+1) p2 Revenue generated by users switching

exactly every n periods;

3. p2
Q
Ln+1 (β) p2 Revenue generated by users switching less

than every n periods; and

4. B̄Q2 Cost of product development with quality

jump Q.

Here Ln+1 (β) is analogous to L(β) in (43) with the initial n − 1 terms of the

sum not included. The de�nition of Ln+1 (β) is thus the following:

Ln+1 (β) =
∞∑

i=n+1

1

i

(1− β)3 (1− βi)
(1− βi − i (1− β)) (β (1− βi)− i (1− β))

(note that L2(β) is the same as L(β)).

Necessary conditions for equilibrium existence

• Condition 1: There are users who would switch every period:

0 ≤ θ1,n ≤ 1. (48)

• Condition 2: There are users who would switch every n periods, but no user

would switch every n− 1 periods:

θn,n+1 ≤ θ1,n ≤ θn−1,n. (49)

Remark 17. The whole problem could be generally solved using Lagrangian multipli-

ers and Kunh�Tucker conditions; however, we approach it by using an unconstrained

maximization problem with the further identi�cation of binding constraints that are

later incorporated into the decision process. This approach gives more insights on

model behavior.

Remark 18. Other conditions that must hold are participation constraints

θm,m+1mq − p2 ≥ 0 for m ≥ n and θ1,nq − p1 ≥ 0. However, these conditions

hold by the construction of the respective thresholds as is shown in the corresponding

propositions.
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A user indi�erent between switching every period and every n periods

As compared to perfect foresight with a single price, the problem of the indi�erent

user is now more complicated. If a user owns a version which is more than one

period older, then this user is only eligible for the full price p2 so that the decision

on the frequency of switching follows the rule (40) with p2 instead of p, so that the

optimal switching frequency at the full price n = n(θ, p2, Q, β) is derived. However,

if the user owns the version from the previous period, then the user is also eligible

for the upgrade price p1, so that two options are available. First, the user can

exercise his upgrade price claim, and if this is optimal, then this will be done in

every subsequent period as the same choice will be faced. Second, the user may wait

n − 1 periods so that the version at hand becomes n periods old and then switch

every n = n(θ, p2, Q, β) periods20.

Lemma 9. Given the discount factor β, the software prices p1 and p2, and

the per-period quality improvement Q, the user indi�erent between switching every

period at the upgrade price p1 and in every n periods at the full price p2 has quality

sensitivity

θ1,n = (1− β)
p1 (1− βn)− p2 (1− β) βn−1

(1− βn − nβn−1(1− β))Q
. (50)

The users with θ > θ1,n strictly prefer switching every period at p1 to switching every

n periods at p2, and the users with θ < θ1,n strictly prefer switching every n periods

at p2 to switching every period at p1. Moreover, if n is optimal at price p2, then

the utility �ow to the indi�erent consumer is non-negative so that the participation

constraint is satis�ed.

Proof. The derivation of the threshold (50) and the proof that the participation

constraint is satis�ed can be found in Appendix 11.7. �

For the sake of convenience, denote

X =
(1− β)2

n (1− β)− β (1− βn)
, Y =

(1− β) (1− βn)

1− βn − nβn−1(1− β)
,

Z =
(1− β)2 βn−1

1− βn − nβn−1(1− β)
,

so that the thresholds can be written as θn,n+1 = p2
Q
X and θ1,n = p1

Q
Y − p2

Q
Z.

20From the optimality of n(θ, p2, Q, β), it follows that the user will not consider the options
involving either switching (at p2) at other frequencies or waiting for any other number of periods
than n− 1 and then switching every n periods.
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7.2 Equilibria

The approach for calculating equilibria is the following. Given β, we �x n and

look for an equilibrium assuming that conditions (48) and (49) are satis�ed. If

they indeed hold, we have an interior equilibrium. In case some condition is not

satis�ed, we incorporate this condition into the pro�t function and calculate the

equilibrium again. Then we look for n ∈ (2,∞) such that the developer maximizes

his pro�t. Unfortunately, we cannot internalize n into a general solution and the

only possibility is to verify the solution for the problem for all n. However, from the

solution, it will be clear how the pattern of equilibria changes based on n and β.

As in the case of imperfect foresight, we will distinguish �lock-in� and �non-lock-

in� equilibria. By a �lock-in� equilibrium we understand the developer's strategy

when he sets the price di�erence between the upgrade price p1 and the full price p2 so

high that there is no user switching every two periods (or even more). Consequently,

a �non-lock-in� equilibrium is an equilibrium when prices p1 and p2 are in such a

relation that there are users switching every two periods. As is shown later, the only

condition that may be violated after an unconstrained optimization is θ1,n ≥ θn,n+1,

which e�ectively means that it is optimal for the developer to increase n. The

distribution of switching frequencies across users is qualitatively the same as in

the imperfect foresight case, see Figures 6and 7, though the threshold values are

di�erent.

�Non-lock-in� equilibria

Necessary conditions for the existence of an interior non-lock-in equilibrium21 are

θ2,3(p∗2) ≤ θ1,2(p∗1, p
∗
2) ≤ min{θ1,2(p∗2), 1}, and since equilibrium prices and the quality

jump are dependent on β, the resulting necessary condition will be fully dependent

on β too. As we have shown already in (50), the indi�erent user between switching

every period at p1 and every two periods at p2 has quality sensitivity

θ1,2(p1, p2) =
p1

Q
(1 + β)− p2

Q
β. (51)

21Here θ1,2(p∗1, p
∗
2) is θ1,n calculated at n = 2, i.e., the user who is indi�erent between switching

every period at p1 and switching every two periods at p2; whereas, θ1,2(p∗2) = p∗2/Q
∗ is θn−1,n

calculated at n = 2, i.e., the user who is indi�erent between switching every period at the "full"
price p2 and switching every two periods at p2.
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From equation (39), we know that a user who is indi�erent between switching every

second and every third period (at p2) satis�es

θ2,3(p2) =
p2

Q (β + 2)
. (52)

Then after substituting θ1,2, θ2,3 from (51), (52) into the general pro�t function (47),

simplifying for n = 2, and using F.O.C. (see 11.7for S.O.C. and condition tests), we

obtain a pro�t function similar to the pro�t function of the non-lock-in case in the

imperfect foresight set-up, see (25):

Π =

(
1− p1

Q
(1 + β) +

p2

Q
β

)
p1 +

1

2

(
p1

Q
(1 + β)− p2

Q
β − p2

Q (β + 2)

)
p2 +(53)

+
p2

Q
L3p2 − B̄Q2.

Using F.O.C. (see Appendix 11.7for S.O.C. and the necessary conditions), we

obtain equilibrium prices p∗1, p
∗
2 and quality improvement Q∗:

p∗1 =
4λ2

2

Λ2
2B̄

, p∗2 =
2 (2 + β) (1 + 3β)λ2

Λ2
2B̄

, Q∗ =
λ2

Λ2B̄
, (54)

where

λ2 = (1 + β)2 − 2(2 + β)L3, Λ2 = 6 + 11β − β3 − 16(1 + β)(2 + β)L3,

and these values are positive at every β ∈ (0, 1). The only necessary condition that

is not guaranteed to hold is θ2,3(p∗2) ≤ θ1,2(p∗1, p
∗
2), which is violated at β ≥ B2 ≈

0.325448. The violation of this condition means that the developer's pro�t decreases

in p1 in the entire non-lock-in region, whence it is optimal for the developer to switch

to 3-lock-in (and often further).

Substituting the equilibrium values back into the pro�t function as well as (51),

(52), we obtain

Π∗ =
λ2

2

Λ2
2B̄

, θ∗1,2 =
2 (2 + 4β − β2 − β3 − 4(1 + β)(2 + β)L3)

Λ2

, θ∗2,3 =
2(1 + 3β)

Λ2

,

so that the number of high-end users N1 = 1 − θ1,2 and the per-period average
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number of low-end users N2 = 1
2

(θ1,2 − θ2,3) + p2
Q
L3 in equilibrium are the following.

N∗1 =
(1 + β)(2 + β + β2 − 8L3(2 + β))

Λ2

,

N∗2 = (1− β)
λ2

Λ2

.

Corollary 1. Equilibrium prices per quality rations, obtained directly from (54),

equal
p∗1
Q∗

=
4λ2

Λ2

,
p∗2
Q∗

=
2 (2 + β) (1 + 3β)

Λ2

.

As β is increasing, the equilibrium number of high-end users is also increasing.

Intuitively, the present value of the future utility �ow is growing in β, so it becomes

more pro�table for the consumers to use the upgrade option. This also leads the

developer to decrease p1 with respect to p2, thus attracting more consumers to the

upgrade version, until β reaches B2, when all consumers buying every two periods

are crowded out.

�Lock-in� equilibria

In the previous part, we examined non-lock-in equilibria where users switching every

two periods were always present on the market. Now, we will generalize the case

in a way that users switching every two periods (or even less frequently) are not

present on the market. Taking into account the previous calculation, we derive the

following general pro�t function:

Π =

(
1− p1

Q
Y +

p2

Q
Z

)
p1 +

1

n

(
p1

Q
Y − p2

Q
Z − p2

Q
X

)
p2 +

p2

Q
Ln+1p2 − B̄Q2, (55)

where n is the lowest frequency of users switching at the regular price present on

the market. Then the �lock-in� equilibrium is the following (see Appendix 11.7for

S.O.C. and the necessary conditions).

p∗1 =
n2λ2

n

Λ2
nB̄

, p∗2 =
n2(Y + nZ)λn

2Λ2
nB̄

, Q∗ =
nλn

2ΛnB̄
,

where

λn = X + Z − nLn+1, Λn = 2nY (2X + Z)− Y 2 − n2Z2 − 4n2Y Ln+1,

and these values are positive at every n and β ∈ (0, 1). The only necessary condition

that is not guaranteed to hold is θn,n+1 ≤ θ1,n, which is violated at β ≥ Bn, where Bn
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is increasing in n with limn→∞Bn = 1
2
, tabulated in Appendix 11.8. The violation of

this condition means that the developer's pro�t decreases in p1 in the entire n-lock-

in region, so that it is optimal for the developer to switch to (n+ 1)-lock-in. This

implies that if β ≥ 1
2
, then it is optimal in our model for the developer to crowd out

lower frequencies of switching in�nitely, so no price discrimination equilibrium exists.

However, if we introduce discounting into the developer's pro�t and take into account

that the consumers start buying only after the quality accumulated reaches their

participation constraint (instead of neglecting this due to no discounting, in�nite

horizon, and hence per-period optimization), then lock-in equilibria would exist for

high values of β. The range of β at which price discrimination equilibria exist would

also expand if we assume that some consumers have perfect foresight and others

have imperfect foresight as described in section 9.2. It should be also noted that

high values of β are not very appropriate to software.

Substituting the equilibrium values back into the pro�t function (55) as well as

into the thresholds, we obtain

Π∗ =
n2λ2

n

4Λ2
nB̄

, θ∗1,n =
n (Y (2X + Z)− nZ2 − 2nY Ln+1)

Λn

, θ∗n,n+1 =
nX(Y + nZ)

Λn

,

so that the number of users, who are switching are

N∗1 = 1− θ∗1,n =
Y (n(2X + Z)− Y − 2n2Ln+1)

Λn

,

N∗2 =
1

n

(
θ∗1,n − θ∗n,n+1

)
+
p∗2
Q∗
Ln+1 = (Y − nZ)

λn
Λn

.

Comparative statics for price discrimination equilibria

The following results can be derived from the equilibria above. Recall that non-

lock-in is mathematically 2-lock-in. We assume that β is valid, i.e., β ≤ Bn for the

given n.

Lemma 10. If the developer uses n-lock-in price discrimination under perfect

foresight, then the average number of switching users is decreasing in n and increas-

ing in β, whereas the equilibrium quality change, both prices, both prices per quality

change, and the developer's pro�t increase in both n and β. In addition, the equi-

librium quality change converges for β < 1
2
from below to the socially optimal level

Q0 = 1
4B̄(1−β)

as n increases.
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7.3 Equilibria comparison under perfect foresight

Here we compare perfect foresight equilibria under a single price and under price

discrimination. As under imperfect foresight, the developer's pro�t is always higher

for price discrimination since the developer always has a possibility to set prices p1 =

p2. The following result, which exactly parallels the imperfect foresight outcome,

can be shown to hold.

Lemma 11. In the case of price discrimination, a developer's quality Q and

both prices are higher than in the case of a single price, that is p∗ ≤ p∗1 ≤ p∗2, and

the price per unit of the quality jump is higher in the case of price discrimination,

that is p∗

Q
≤ p∗1

Q
≤ p∗2

Q
, no matter the β and B. This result is independent from the

perfect or imperfect foresight set-up.

From this result, it follows that the developer's cost of a higher quality improve-

ment in the case of price discrimination is more than fully compensated for by the

increased prices.

In comparing the developer pro�t for a particular β and n, we see that the best

strategy for the developer in our model is to set n close to in�nity, which is the same

result as in the case of imperfect foresight. This result again stems from our model

set-up, where the developer is maximizing the average pro�t per period. Thus, the

developer does not di�erentiate between the pro�t realized in the �rst period and

the pro�t from a very distant period �close to in�nity.� Note that maximizing the

average pro�t instead of the discounted pro�t across each period is a simpli�cation

to obtain an analytical solution, and the introduction of discounting would lead to

a �nite optimal lock-in depth.

8 Welfare analysis: perfect foresight set-up

A welfare analysis for the perfect foresight set-up is analogous to the imperfect

foresight set-up from section 5. All related results from the imperfect foresight

remain valid for the perfect foresight at β = 0. The following result can be shown

to hold22.

Proposition 9. (i) Consumer surplus per period is higher for the single price

developer than for the price discriminating developer for all relevant β, increases in

β and decreases in n as n-lock-in is used. This is valid for the total consumer surplus

as well as for the consumer surplus for high-end and low-end users separately.

22These results were derived similar to those presented in Appendices 11.5 and 11.5 , but with
perfect foresight equilibria and thresholds. As these results are often mathematically cumbersome,
we opted not to include them explicitly but rather leave the Mathematica �le available upon
request.
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(ii) Under perfect foresight, the equilibrium per-period CS per buyer (total, high-

end, and low-end alike) increases in β, which applies to both a single-price monopoly

and price discrimination for every n. Per-period CS per buyer for high-end users

is higher for the single price developer than for the price discriminating developer

for all relevant β and decreases in n. Per-period CS per buyer for low-end users is

lower for the single price developer than for the price discriminating developer for

all relevant β except for β <≈ 0.097773 at n = 2 and β <≈ 0.004777 at n = 3, and

increases in n.

(iii) Under perfect foresight, total per-period CS per buyer is lower for the single

price developer than for the price discriminating developer whenever n ≥ 8 or β >≈
0.289509. It increases in n whenever n ≥ 8 or β <≈ 0.099358.

Part (i) exactly corresponds to the one from the imperfect foresight case, and

part (ii) is similar to what happens under imperfect foresight (recall that under

imperfect foresight, CS per buyer for high-end users follows the same pattern as

CS itself; whereas, the total CS per buyer and CS per buyer for low-end users

increase in n and are higher under price discrimination except for n = 2 and n = 3).

Thus, part (ii) con�rms that the di�erent relation between a single-price and price

discrimination CS per buyer for low-end users for low n is just a mathematical

property.

Part (iii) shows that as for the total CS per buyer, the e�ect for low-end users

eventually prevails (mainly because the CS for high-end users decreases more quickly

than the CS for low-end users). (See Appendix 11.8for the behavior of the CS per

buyer when n is small.) As it is optimal for the developer to �squeeze� non-updating

consumers who switch relatively frequently, the CS per buyer eventually increases

in n.

As for social welfare, according to Lemmas 7.2and 7.3, the equilibrium quality is

higher under price discrimination and converges from below to the socially optimal

level as n increases. Therefore, the same properties apply to the equilibrium social

welfare (for β < 1
2
, when price discrimination equilibria exist).

9 The comparison between imperfect and perfect

foresight

9.1 The comparison of equilibria

As we have already noted, the outcome of the model at β = 0 is identical under

both perfect and imperfect foresight. While the results at β > 0 are di�erent as
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described below, there is one notable exception. Namely, the average number of

users who switch to a new version every period is 1
2
no matter whether they have

perfect or imperfect foresight. Therefore, the number of switching users per period

under a single price is independent from the discount factor β, and costs B̄.

Before comparing other results, recall that while perfect foresight results are

expressed in terms of the developer's quality cost e�ciency B̄ and the quality choice

Q, imperfect foresight results were, for convenience, expressed in terms of B =

B̄(1− β)2 and q = Q
1−β , so the corresponding change has been made. The following

result can be proved.

Proposition 10. Assume that β > 0, the price setting is �xed at either a single

price or price discrimination by upgrades, and that n is �xed with β ≤ Bn in the

discrimination case. Then the following results hold.

(i) The equilibrium prices, qualities, price-to-quality ratios, and per period pro�ts

are lower under perfect foresight than under imperfect foresight, and the average

per-period number of switching users is higher under perfect foresight than under

imperfect foresight.

(ii) Under price discrimination, the equilibrium per-period consumer surplus,

whether total or per buyer, is higher under perfect foresight than under imperfect

foresight, counted for all users or for high-end and low-end consumers separately.

However under the single price, the CS is higher under perfect foresight if β is not

too high (β < 1
2
is su�cient in all cases) but becomes higher under imperfect foresight

as β → 1.

(iii) The social welfare is lower under perfect foresight than under imperfect

foresight.

A useful insight into part (i) is provided by Lemmas 6.1and 7.1, where we show

that the indi�erent users have a positive utility �ow under perfect foresight, and

that �ow is zero under imperfect foresight. In other words, the developer cannot

exert as much monopoly power against users with perfect foresight as against users

with imperfect foresight: hence, the result above. This is especially evident as

β → 1 when the imperfect foresight values (other than number of users) tend to

+∞; whereas, the perfect foresight values, while also increasing in β, have �nite

limits.

For part (ii)�See Appendix 11.8for the thresholds under a single-price monopoly�

the lower degree of monopoly power in equilibrium also results in a higher consumer

surplus under perfect foresight when β is relatively low, including all values of β such

that a price discrimination equilibrium under perfect foresight exists. However, at

high values of β (which are improbable as noted in the discussion of price discrimi-
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nation equilibria under perfect foresight), when the imperfect foresight equilibrium

values tend to in�nity, CS becomes higher under imperfect foresight.

Part (iii), while following from the fact that equilibrium qualities are lower under

perfect foresight, might be surprising as a weaker monopoly is usually associated

with higher welfare. However, in our model, while the developer cannot extract as

much CS from the users as under imperfect foresight, neither are the users able to

capture the entire di�erence, which results in a loss in welfare. Note that as it is

optimal for the price discriminating developer to �squeeze� in�nitely, the welfare will

tend to its optimal value in both cases.

9.2 The generalization of results

We have shown that the comparative static results are qualitatively independent

from using a perfect foresight or an imperfect foresight set-up. Thus, we can gen-

eralize the comparative static results on the market set-up where we have mixed

users with imperfect and perfect foresight. If the type of foresight of the user is sta-

tistically independent from the user's quality sensitivity, with the latter uniformly

distributed on 〈0, 1〉, then all qualitative results of this paper remain valid.

10 Conclusion

In this paper, we have analyzed monopoly price discrimination based on upgrades

designed for users who switch every period. It was done in quite a general set-up

(in�nitely durable products, an in�nite number of users with di�erent sensitivity to

quality), and our restrictions on the model set-up were only based on the empirically

observed patterns of the developers' behavior. We assumed the prices to be the same

in every period since in real markets, we often observe prices for new versions of a

product set at almost the same level as for previous versions. Our second restriction

was that the quality improvement from one period to another was �xed.

As for our main result, we showed that price discrimination does not lead to

lower prices for any user group in the market. This is caused by the character of

price discrimination in our model, when the target group of price discounts is not

the most price sensitive group of the users, but the discount is provided to the users

with the highest frequency of switching, i.e., to the users with the highest sensitivity

to quality.

The second key result is that a price discriminating developer accelerates soft-

ware development more than a single-price developer, which could be perceived as

bene�cial for users, but on the other hand, the number of switching users in the case
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of a price discriminating developer is always lower. Even if we split users into two

groups, those who switch every period and those who switch less frequently, we see

that in the case of a price discriminating developer, the number of switching users

is lower in both groups.

We showed that all those comparative static results are valid no matter whether

users have perfect or imperfect foresight.

We can also look at the results from a di�erent perspective: a price discriminating

developer can more e�ectively �separate� high-end users from low-end users and

charge them a higher price by o�ering a higher software quality while at the same

time being aware that low-end users become less important from a revenue point of

view. Since the developer knows that low-end users would switch to a new version

from time to time anyway, the developer sets the price for them relatively higher

than in the case of a single price, which ensures for the developer that those users

who may consider switching to a new version every second period at the full price

would rather switch every period for the lower upgrade price. This e�ect is more

visible for perfect foresight users.

As for social welfare, a price discriminating developer generates (under plausible

assumptions) higher per-period consumer surplus per user, but at the same time

the number of switching users is lower, and the overall consumer surplus is lower

as well. While this also indicates that the developer's monopoly power strengthens,

the social welfare increases as well and approaches the socially optimal level in the

limiting case.

The model used in the article was designed for the software market, but it can

be easily applied more widely whenever users are heterogeneous and a resale market

is outlawed. In�nite durability of the product is not necessary, but the absence of

product depreciation eliminates demand generated by product replacement due to

physical obsolescence, which simpli�es the analytical solution.

11 Appendix

Most of the calculations in this paper were performed using Mathematica and other

similar software. The Mathematica �le is available upon request.

11.1 The approach used for S.O.C. veri�cation

In all cases, the objective function is the developer's pro�t, which can be either a

function of a single price and a quality, Π(p,Q), or a function of two prices and a

quality, Π(p1, p2, Q), where Q is replaced with q under imperfect foresight. In the
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single-price case, the form of the Hessian used in this paper is

H =

(
Πpp ΠpQ

ΠpQ ΠQQ

)
, (56)

and in the two-price case we use

H =

 Π11 Π12 Π1Q

Π12 Π22 Π2Q

Π1Q Π2Q ΠQQ

 , (57)

where subscripts `1' and `2' stand for the derivatives with respect to p1 and p2.

In the proofs below, we immediately proceed to listing the principal minors of the

Hessians.

11.2 The approach used for consumer surplus calculation

A recurrent task in this paper is to calculate the average per period consumer surplus

(CS) as an in�nite sum of CS of the consumers who switch every n or more periods,

n ≥ 2. Recall that the structure of the consumers' utility is θQ − p, so that the

structure of added consumer utility is θq − p, where q = Q
1−β , and the range of the

consumers who switch every n periods is given by θn,n+1 < θ < θn−1,n, where θn,n+1

strictly decreases in n and limn→∞ θn,n+1 = 0. In addition, the usual form of θn,n+1

is

θn,n+1 =
p

Q
Xn, lim

n→∞
Xn = 0

(here p can be p2, and Q can be q for imperfect foresight, but see below). Then the

average demand per period from the group in question equals

∞∑
m=n

1

m
(θm−1,m − θm,m+1) =

p

Q

∞∑
m=n

1

m
(Xm−1 −Xm) =

p

Q
Ln.

The value Ln depends on the consumers' discount factor β, and at β = 0, it turns

into the imperfect foresight Dn. The subscript n is usually omitted when n = 2.

CS for the group in question is given by CSn+ =
∑∞

m=nCSm, where

CSm =

ˆ θm−1,m

θm,m+1

(
θq − p

m

)
dθ =

ˆ (p/Q)Xm−1

(p/Q)Xm

(
θq − p

m

)
dθ =

p2

Q

(
X2
m−1 −X2

m

2(1− β)
− Xm−1 −Xm

m

)
.
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Note that the in�nite sum of the �subtracted� term inside the parentheses is Ln, and

as limm→∞Xm = 0,

∞∑
m=n

(
X2
m−1 −X2

m

)
= lim

m→∞

(
X2
n−1 −X2

m

)
= X2

n−1,

so that the �nal expression for CS is

CSn+ =
∞∑
m=n

CSm =
p2

Q

(
X2
n−1

2(1− β)
− Ln

)
.

Two particularly important cases are n = 2 (recall that X1 = 1 for all β), and

n = n+ 1 (when the summation starts at n+ 1). Then

CS2+ =
p2

Q

(
1

2(1− β)
− L

)
, CS(n+1)+ =

p2

Q

(
X2
n

2(1− β)
− Ln+1

)
.

For imperfect foresight the outcome is (note that here Xn = 1/n)

CS2+ =
p2

q

(
1

2
−D

)
, CS(n+1)+ =

p2

q

(
1

2n2
−Dn+1

)
.

11.3 The single price model for imperfect foresight users

S.O.C. veri�cation

The pro�t function is

Π =

(
1− p

q

)
p+

p

q
Dp−Bq2,

and the principal minors of the Hessian are 2
q

(D − 1) and 4B
q

(1−D), so that H is

negative de�nite as q > 0, B > 0, and D ≈ 0.355. Therefore, the solution to F.O.C.

is a maximum.

11.4 Imperfect foresight users and price discrimination

S.O.C. and validity in non-lock-in

We have to maximize the pro�t

Π =

(
1− p1

q

)
· p1 +

p2

q
D · p2 −B · q2 −

(
p2

q
− p1

q

)
· 1

2
· p2

with respect to the conditions p1 ∈
〈
p2
2
, p2

〉
and p1

q
≤ 1. Our approach is to start

with unconstrained optimization and check the conditions afterwards. (It happens
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that the conditions are satis�ed, so there is no need to re-calculate.)

F.O.C. result in

p∗1 = 4
(1− 2D)2

(16D − 7)2B
, p∗2 = 2

1− 2D

(16D − 7)2B
, q∗e =

2D − 1

B (16D − 7)
,

so that
p∗1
p∗2

= 2 − 4D, and 1 − p1
q

= 3−8D
7−16D

, which satis�es our assumptions that

p1 ∈
〈
p2
2
, p2

〉
and p1

q
≤ 1. The principal minors of the Hessian equal −2

q
, 7−16D

4q2
,

and −B(7−16D)
2q2

, so that H is negative de�nite as q > 0, B > 0, and D ≈ 0.355.

Therefore, the solution to F.O.C. is a maximum.

S.O.C. and validity in lock-in

The pro�t function in n-lock-in is

Π =
p2

nqe
(p1 + p2 − np2ψ1(n)) +

(
1− p1

qe

)
p1 −Bq2

e .

As in the non-lock-in case, there are the validity conditions p1 ∈ 〈p2n ,
p2
n−1
〉 and p1

q
≤ 1,

which are assumed to hold before being checked.

F.O.C. result in

p∗1 =
n2

B

(nψ1(n)− 1)2

(4n2ψ1(n)− 4n− 1)2 , p
∗
2 =

n2

2B

nψ1(n)− 1

(4n2ψ1(n)− 4n− 1)2 ,

q∗e =
n

2B

nψ1(n)− 1

4n2ψ1(n)− 4n− 1
,

and the validity conditions can be shown to hold using the properties of the polygamma

function.

The Hessian is calculated as in (57 ), and the principal minors equal

−2

q
,

4n2ψ1(n)− 4n− 1

n2q2
, − 2B(4n2ψ1(n)− 4n− 1)

n2q2
,

so that H is negative de�nite as q > 0, B > 0, and it can be shown that 4n2ψ1(n)−
4n− 1 > 0, ∀n ≥ 2. Therefore, the solution to F.O.C. is a maximum.

The number of users under imperfect foresight and price discrimination

The number of upgrading users in equilibrium:

N∗H = 1− p∗1
q∗e

=
1

2

(
1− 1

4n2ψ1(n)− 4n− 1

)
. (58)
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The number of users who buy less frequently than every period is:

N∗L =
p∗2
q∗e
Dn+1 −

1

n

(
p∗2
nq∗e
− p∗1
q∗e

)
=

nψ1(n)− 1

4n2ψ1(n)− 4n− 1
. (59)

Summing N∗H and N∗L, we obtain the average demand per period N∗.

11.5 Imperfect foresight users: comparison and welfare anal-

ysis

Single price versus price discrimination

A comparison using the single-price equilibrium quality q∗ by the price

discriminating developer In the equilibrium comparison in the main part, we

see that prices and quality are higher in the case of a price discriminating devel-

oper. Assume now that the developer has already set the quality at a level of the

single price equilibrium q∗ = 1
8(1−D)B

, derived in (18), and now is allowed to price

discriminate. We now compare how these prices, denoted as pcs1 and pcs2 , di�er from

the single-price equilibrium value p∗. This comparison will allow us to separate the

pure e�ect of enabling price discrimination and the e�ect of higher quality in the

case of price discrimination.

Proposition 11. Optimal prices for discrimination for a developer who has

already set q = q∗ are

pcs1 =
1

2B

1− 2D

(7− 16D)(1−D)
, pcs2 =

1

4B

1

(7− 16D)(1−D)
.

Proof. If the quality change q is �xed in the non-lock-in price discrimination

problem, F.O.C. in prices result in

p1 =
4(1− 2D)

7− 16D
q, p2 =

2

7− 16D
q,

the ratio of the prices is p1
p2

= 2− 4D, so that the non-lock-in condition p1 ∈
〈
p2
2
, p2

〉
is satis�ed, and the principal minors of the Hessian equal −2

q
and 7−16D

4q2
so that the

solution is a maximum. Substituting q = q∗ yields the result. �

By comparing with the optimal single price p∗ = 1
16(1−D)2B

, we immediately see

that
pcs1
p∗
' 1.133911, so that pcs1 is higher than p

∗, and since pcs2 is higher than pcs1 ,

both prices are higher in the case of price discrimination.

Corollary 2. Enabling price discrimination while �xing q∗ from the single-price

equilibrium decreases the average number of users who switch to the new product,
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raises the price for both the upgrade and full versions, and increases the price per

quality value, p∗

q∗
<

psc1
q∗
<

psc2
q∗
.

Proof. The result is proven by direct comparison. �

Thus, the key result from the comparison of the single-price and price discrimina-

tion equilibria comes from two e�ects: enabling price discrimination and increasing

equilibrium quality. Further, these two e�ects reinforce each other as both result in

higher prices and a lower number of users.

Welfare analysis: single price developer

Recall that the equilibrium price and quality improvement are

p∗ =
1

16 (1−D)2B
, q∗ =

1

8 (1−D)B
=⇒ p∗

q∗
=

1

2 (1−D)
.

The asterisk superscript denoting the equilibrium values is implied where needed.

Consumer surplus for high-end users equals

CSH =

ˆ 1

p
q

(θq − p) dθ =
1

2q
(p− q)2 =

1

64

(1− 2D)2

(1−D)3B
≈ 0.0048941

B
. (60)

Consumer surplus per buyer for high-end users is then

CSH
NH

=
CSH
1− p

q

=
1

2
(q − p) =

1

32

1− 2D

(1−D)2B
≈ 0.021778

B
. (61)

Consumer surplus for low-end users equals

CSL =
p2

q

(
1

2
−D

)
=

1

64

1− 2D

(1−D)3B
≈ 0.016884

B
. (62)

Consumer surplus per buyer for low-end users is then

CSL
NL

=
CSL
p
q
D

= p
(1− 2D)

2D
=

1

32

(1− 2D)

(1−D)2DB
≈ 0.061335

B
. (63)

Total consumer surplus equals

CS = CSH + CSL =
1

32

1− 2D

(1−D)2B
≈ 0.021778

B
. (64)
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Consumer surplus per buyer is then

CS

N
=

1

16

1− 2D

(1−D)2B
≈ 0.043556

B
. (65)

Finally, social welfare under imperfect foresight with a single-price developer

equals

W =
1

2
q −Bq2 =

3− 4D

64B (1−D)2 =
3

16

2π2 − 15

B (π2 − 6)2 ≈
0.059344

B
. (66)

A welfare analysis: price discrimination

Here the general n-lock-in case is analyzed. Recall that non-lock-in is mathemati-

cally 2-lock-in. Recall that the equilibrium prices and quality change are

p∗1 =
n2

B

(nψ1(n)− 1)2

γ2
4

, p∗2 =
n2

2B

nψ1(n)− 1

γ2
4

, q∗e =
n

2B

nψ1(n)− 1

γ4

,

where γm = mn2ψ1(n)−mn− 1, note that γm > 0 for n ≥ 2, and m = 2, 3, 4. The

asterisk subscript for the equilibrium values is implied where needed.

Consumer surplus for high-end users equals

CSH =

ˆ 1

p1
qe

(θqe − p1) dθ =
1

2qe
(p1 − qe)2 =

n

4B

(nψ1(n)− 1) γ2
2

γ3
4

. (67)

Consumer surplus per buyer for high-end users is then

CSH
NH

=
1− γ−2

4

32B
. (68)

Consumer surplus for low-end users consists of the surplus for those who buy

with the frequency of exactly n periods ( p2
nqe

= θn,n+1 < θ < θ1,n = p1
qe
) and for those

who buy even less frequently. The former term equals

ˆ θ1,n

θn,n+1

θqe −
p2

n
dθ =

1

2

(np1 − p2)2

n2qe
,

and the latter equals
p2

2

qe

(
1

2n2
−Dn+1

)
.
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Substituting the equilibrium values yields

CSL =
n2

2B

(nψ1(n)− 1)2 γ2

γ3
4

. (69)

Consumer surplus per buyer for low-end users is then

CSL
NL

=
n
(
1− γ−2

4

)
16B

. (70)

Total consumer surplus equals

CS = CSH + CSL =
1− γ−2

4

32B
,

and total consumer surplus per buyer is CS/ND∗, where

ND∗ =
n(1 + 2n)ψ1(n)− 2(1 + n)

4n2ψ1(n)− 4n− 1
.

Finally, social welfare under imperfect foresight when the developer uses price

discrimination with n-lock-in equals

W =
1

2
qe −Bq2

e =
n

4B

(nψ1(n)− 1) γ3

γ2
4

.

11.6 Perfect foresight: single price developer

The user indi�erent between switching every n and every n+ 1 periods

Assume that there is a single price p, the user purchased the product in the current

period and now decides on whether to switch every n or every n + 1 periods. As

the user will buy the product n(n + 1) periods from the current one in both cases,

the decision is based on (the NPV of) the utility added between the current period

and the period n(n+ 1)− 1 from now. Note that if a user buys a version T periods

from now and keeps it for S periods, then the utility added over the periods from

T to T + S − 1 equals

U = βT
(
θTQ

1− βS

1− β
− p
)
.

The user switching every n + 1 periods buys in periods n + 1, 2(n + 1), . . . ,

(n − 1)(n + 1), and keeps every version purchased for n + 1 periods, so that the
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utility added equals

Un+1(θ) = θ
n−1∑
i=1

βi(n+1) (i (n+ 1))Q
1− βn+1

1− β
−

n−1∑
i=1

βi(n+1)p.

The user switching every n periods buys in periods n, 2n, . . . , n · n, and keeps

every version purchased for n periods, so that the utility added equals

Un(θ) = θ

n∑
i=1

βi·n (i · n)Q
1− βn

1− β
−

n∑
i=1

βi·np.

From these two, we can derive the indi�erent user θn,n+1 after algebraic trans-

formations:

θn,n+1 =
p

Q

(1− β)2

n (1− β)− β (1− βn)
.

As for an alternative decision process, when the user has the version which is n

periods old and chooses between buying now and then every n periods and buying

in the next period and then every n + 1 periods, the outcome is the same as the

utilities to compare, β−nUn(θ) and β−nUn+1(θ) respectively.

Note that at β = 1, the term 1−βS

1−β is to be replaced with S, and then θn,n+1 =
p
Q

2
n+n2 . Also note that the threshold can be expressed as

θn,n+1 =
p

Q

1∑n
m=1mβ

n−m ,

so that θn,n+1 decreases in β.

Recall that the corresponding threshold for imperfect foresight is p
nq

= p
Q

1−β
n
,

and the ratio of the two equals

θn,n+1

(
p

Q

1− β
n

)−1

=
n(1− β)

n(1− β)− β(1− βn)
≥ 1

(equality holds only at β = 0), so that the perfect foresight threshold is not lower

than the imperfect foresight one. Therefore, the utility received by a user indi�erent

between switching every n and every n + 1 periods, which is zero in the imperfect

foresight case, is non-negative, and positive if β > 0, under perfect foresight.
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11.7 Perfect foresight: discrimination by upgrades

The user indi�erent between switching every period at the upgrade price

and every n periods at the full price

Assume that the user purchased the product in the previous period, so two options

are considered. First, the user can exercise the right to buy at the upgrade price p1,

and if this is optimal, then the same decision will be made in all subsequent periods.

Second, the user may decide to wait thus losing his eligibility for the upgrade price,

so that the user would wait n − 1 periods and then switch every n periods at the

full price p2, where n is determined as in Appendix 11.6. The easiest way to derive

the threshold is to compare in�nite discounted added utility �ows from these two

options. Note that if a user buys at price p a version T periods older than the

previously possessed, then the in�nite added utility �ow at the moment of purchase

equals

U = θTq − p =
θTQ

1− β
− p.

The user switching every period from the current one inclusive at price p1 has

an added utility �ow of

U1(θ, p1) =

(
θQ

1− β
− p1

)(
1 + β + β2 + · · ·

)
=

θQ

(1− β)2 −
p1

1− β
.

The user switching n− 1 periods from the current one and then every n periods,

always at p2, has an added utility �ow of

Un(θ, p2) =

(
θnQ

1− β
− p2

)(
βn−1 + β2n−1 + β3n−1 + · · ·

)
=

= βn−1

(
θnQ

(1− β) (1− βn)
− p2

1− βn

)
.

From these two, we can derive the indi�erent user θ1,n after algebraic transfor-

mations:

θ1,n = (1− β)
p1 (1− βn)− p2 (1− β) βn−1

(1− βn − nβn−1(1− β))Q
.

Note that as β → 0, θ1,n → p1
Q
, which is the imperfect foresight value of this

threshold, and as β → 1, θ1,n → 2(np1−p2)
n(n−1)Q

.

If n is optimal at price p2, then θ1,nnq− p2 ≥ 0 as is shown in Appendix 11.6, so

that θ1,nq − p1 ≥ 0.
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S.O.C. and validity in non-lock-in

The pro�t function is

Π =

(
1− p1

Q
(1 + β) +

p2

Q
β

)
p1 +

1

2

(
p1

Q
(1 + β)− p2

Q
β − p2

Q (β + 2)

)
p2 +

+
p2

Q
L3p2 − B̄Q2,

and the validity conditions are θ1,2(p2) ≥ θ1,2(p1, p2) ≥ θ2,3(p2) and 1 ≥ θ1,2(p1, p2),

which are assumed to hold before being checked. F.O.C. result in

p∗1 =
4λ2

2

Λ2
2B̄

, p∗2 =
2 (2 + β) (1 + 3β)λ2

Λ2
2B̄

, Q∗ =
λ2

Λ2B̄
,

where

λ2 = (1 + β)2 − 2(2 + β)L3, Λ2 = 6 + 11β − β3 − 16(1 + β)(2 + β)L3,

so that the conditions θ1,2(p2) ≥ θ1,2(p1, p2) and 1 ≥ θ1,2(p1, p2) hold for every β,

and the remaining condition θ1,2(p1, p2) ≥ θ2,3(p2) holds for β ≤ B2 ≈ 0.325448.

The minors of the Hessian equal

−2(1 + β)

Q
,

Λ2

4Q2(2 + β)
, − B̄Λ2

2Q2(2 + β)
,

so that the solution is a maximum.

S.O.C. and validity in lock-in

The pro�t function is

Π =

(
1− p1

Q
Y +

p2

Q
Z

)
p1 +

1

n

(
p1

Q
Y − p2

Q
Z − p2

Q
X

)
p2 +

p2

Q
Ln+1p2 − B̄Q2,

and the validity conditions are θn−1,n ≥ θ1,n ≥ θn,n+1 and 1 ≥ θ1,n, which are

assumed to hold before being checked. F.O.C. result in

p∗1 =
n2λ2

n

Λ2
nB̄

, p∗2 =
n2(Y + nZ)λn

2Λ2
nB̄

, Q∗ =
nλn

2ΛnB̄
,

where

λn = X + Z − nLn+1, Λn = 2nY (2X + Z)− Y 2 − n2Z2 − 4n2Y Ln+1,
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so that the conditions θn−1,n ≥ θ1,n and 1 ≥ θ1,n hold for every β, and the remaining

condition θ1,n ≥ θn,n+1 holds for β ≤ Bn, where.Bn is tabulated in Appendix 11.8.

The minors of the Hessian equal

−2Y

Q
,

Λn

n2Q2
, −2B̄Λn

n2Q2
,

so that the solution is a maximum.

11.8 Numeric simulations

Functions L(β) and Bn

The calculations were performed in Mathematica, where L(β) was interpolated with

step 10−3.

β L(β) n Bn

0 0.355066 2 0.325448

0.01 0.355942 3 0.377935

0.05 0.359394 4 0.415119

0.1 0.363599 5 0.441850

0.2 0.371653 6 0.461048

0.3 0.379247 7 0.474634

B2 0.381107 8 0.483997

0.4 0.386393 9 0.490227

0.5 0.393105 10 0.494211

0.6 0.399388 11 0.496661

0.7 0.405247 12 0.498115

0.8 0.410682 13 0.498954

0.9 0.415691 14 0.499427

0.95 0.418033 16 0.499833

0.99 0.419827 18 0.499953

1 0.420264 20 0.499989

As for Bn, it increases in n, and its limit can be shown to be 0.5.

CS per buyer under perfect foresight for small n

In the following table, we report the ranges of β in which the behavior of the total

price discrimination equilibrium CS per buyer is di�erent from the general case,
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i.e., it is either lower than under single-price monopoly or decreases in n. No such

behavior occurs for n ≥ 8.

n CSPD < CSSP CSn > CSn+1

2 [0, 0.220619) (0.099358, B2]

3 [0, 0.270516) (0.211142, B3]

4 (0.010498, 0.289509) (0.303669, B4]

5 (0.045734, 0.285588) (0.379895, B5]

6 (0.078875, 0.262546) (0.442822, B6]

7 (0.117158, 0.222414) �

CS comparison under a single-price monopoly

In the following table, we report the maximal values of β until which CS is higher

under perfect foresight than under imperfect foresight when the developer charges

the same price to all consumers. Note that CS is higher under perfect foresight in all

cases when 0 < β < 1
2
. The threshold for all users is the same because the number

of switching users is the same (N∗ = 1
2
) in both cases.

All users High-end users Low-end users

CS 0.733526 0.797919 0.699392

CS per buyer 0.733526 0.875735 0.569339
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